Поделитесь своими знаниями, ответьте на вопрос:
Можете решить контрольную по геометрии 10 класс Вариант 21 . Точки F, M, N и C — середины отрезков BS, DB, AD и AS соответственно, SD = 30 см, AB = 36 см (рис. 11 Определите вид четырёхугольника FMNC и вычислите его периметр.2. Плоскость β пересекает стороны AB и AC треугольника ABC в точках N и D соответственно и параллельна стороне BC, AD = 6 см, DN : CB = 3 : 4. Найдите сторону AC треугольника.3 . Треугольник MNK является изображением правильного треугольника M1N1K1 (рис. 12). Постройте изображение биссектрисы треугольника, проведённой из вершины M1.4. Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A1 и B1, а другая — в точках A2 и B2 соответственно. Найдите отрезок A1A2 , если он на 1 см меньше отрезка B1B2 , MA2 = 4 см, A2B2 = 10 см.5. Точки A, B и O, не лежащие на одной прямой, являются соответственно параллельными проекциями двух вершин квадрата и его центра. Постройте изображение квадрата
Диагонали квадрата пересекаются наоси цилиндра в точке О.
Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2.
Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД.
Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R.
В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2).
В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4.
AM=a√2·sinα/2
ответ: радиус цилиндра