Ask___
Advice
Главная
О сервисе
О нас
Правила пользования сайтом
Авторское право
Политика конфиденциальности
Ключ для indexNow
Скрипт от рекламы
Задать вопрос
Искать
Главная
Геометрия
Ответы на вопрос
MikhailovnaAnastasiya
29.02.2020
?>
Кроссворд 10 слов по теме кредиты банки
Геометрия
Ответить
Ответы
Allahverdi_Мария475
29.02.2020
Введем обозначения: биссектриса AE, высота BH, точка M пересечения биссектрисы и высоты, x - угол EAC (BAE), R - радиус окружности, описанной около треугольника ABC. <AMH=90-x⇒<AMB=180-(90-x)=90+x. По теореме синусов (рассматриваем треугольник AMB) AB/sin(90+x)=BM/sinx,
AB/cosx=BM/sinx,
ABtgx=BM,
tgx=BM/AB.
Из треугольника ABH sin2x=BH/AB=9*BM/(5*AB)⇒9/5*tgx=sin2x,
sin2x*5/9=tgx,
10/9*sinx*cosx=sinx/cosx,
10cosx/9=1/cosx,
cosx=+-3√10/10, 0<x<π/2⇒cosx=3√10/10⇒sinx=√10/10⇒sin2x=3/5.
По теореме синусов (рассматриваем треугольник ABC) BC/sin2x=2R,
R=BC/2sin2x=6/(2*3/5)=5
ответ: 5.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Кроссворд 10 слов по теме кредиты банки
Ваше имя (никнейм)*
Email*
Комментарий*
Согласен с
политикой конфиденциальности
Отправить вопрос
▲
AB/cosx=BM/sinx,
ABtgx=BM,
tgx=BM/AB.
Из треугольника ABH sin2x=BH/AB=9*BM/(5*AB)⇒9/5*tgx=sin2x,
sin2x*5/9=tgx,
10/9*sinx*cosx=sinx/cosx,
10cosx/9=1/cosx,
cosx=+-3√10/10, 0<x<π/2⇒cosx=3√10/10⇒sinx=√10/10⇒sin2x=3/5.
По теореме синусов (рассматриваем треугольник ABC) BC/sin2x=2R,
R=BC/2sin2x=6/(2*3/5)=5
ответ: 5.