cosA = 0.8; sinA, tgA, ctgA - ?
По основному тригонометрическому тождеству: sin^2A = 1 - cos^2A. Отсюда sin^2A = 1 - 0.64 = 0.36. Тогда sinA = √0.36 = 0.6.
Известно, что tg = sin/cos. Отсюда tgA = 0.6/0.8 = 3/4 или 0.75.
Известно, что ctg и tg взаимнообратны, тогда ctgA = 0.8/0.6 = 4/3.
Поделитесь своими знаниями, ответьте на вопрос:
.Для острого угла α найдите sin α, tg α, ctg α, если cos α =0, 8
cosA = 0.8; sinA, tgA, ctgA - ?
По основному тригонометрическому тождеству: sin^2A = 1 - cos^2A. Отсюда sin^2A = 1 - 0.64 = 0.36. Тогда sinA = √0.36 = 0.6.
Известно, что tg = sin/cos. Отсюда tgA = 0.6/0.8 = 3/4 или 0.75.
Известно, что ctg и tg взаимнообратны, тогда ctgA = 0.8/0.6 = 4/3.