Александрович Андреевна
?>

Найти неизвестные тригонометрические функции угла, если ctg α = -√3, а угол α лежит во второй четверти. Задание 2. Точка O – центр окружности, описанной вокруг равнобедренного треугольника ABC с основанием AB. KA – касательная к данной окружности в точке А. KB∥AC. Перерисуйте рисунок и докажите, что: а) ∠ACB=∠KAB; ( ) б) ∆KAB – равнобедренный; ( ) в) отношение площадей треугольников ACB и KAB не зависит от линейных размеров сторон треугольников, а определяется только величиной ∠ACB. ( )

Геометрия

Ответы

sashakrav

Основанием параллелепипеда является параллелограмм со сторонами

а = 8см и в = 15см, угол между ними α = 60°.

Найдём меньшую диагональ d параллелограмма по теореме косинусов:

d² = а² + в² - 2ав·cosα

d² = 8² + 15² - 2·8·15·0.5 = 64 +225 - 120 = 169

d = 13(cм)

Меньшее диагональное сечение параллелепипеда является прямоугольником со сторонами d и Н (высота параллелепипеда).

S cеч  = d · Н

По условия S cеч = 130см²

d · Н = 130

13·Н = 130

Н = 10(см)

Площадь основания параллелепипеда:

Sосн = а·в·sin 60° = 8·15·0.5√3 = 60√3(cм²)

Периметр параллелограмма

Р = 2(а + в) = 2·(8 + 15) = 46(см)

Площадь боковой поверхности

S бок = Р·Н = 46· 10 = 460(см²)

Площадь полной поверхности параллелепипеда:

S = 2Sосн + Sбок =  2·60√3 + 460 = 120√3 + 460 ≈ 668(см²)

ответ: S = 120√3 + 460 ≈ 668(см²)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти неизвестные тригонометрические функции угла, если ctg α = -√3, а угол α лежит во второй четверти. Задание 2. Точка O – центр окружности, описанной вокруг равнобедренного треугольника ABC с основанием AB. KA – касательная к данной окружности в точке А. KB∥AC. Перерисуйте рисунок и докажите, что: а) ∠ACB=∠KAB; ( ) б) ∆KAB – равнобедренный; ( ) в) отношение площадей треугольников ACB и KAB не зависит от линейных размеров сторон треугольников, а определяется только величиной ∠ACB. ( )
Ваше имя (никнейм)*
Email*
Комментарий*