Поделитесь своими знаниями, ответьте на вопрос:
Площадь боковой поверхности правильной четырёхугольной пирамиды равна 16, площадь её основания равна 8. Найдите угол между плоскостью боковой грани пирамиды и плоскостью её основания. ответ дайте в градусах.
Я предполагаю, что AD < BC, обратный случай сделайте самостоятельно.
N - точка пересечения диагоналей, ВЕ пересекает продолжение AD в точке М, CF пересекает продолжение AD в точке К.
Угол BFC равен углу CAD, поскольку у них стороны перпендикулярны, а угол CAD равен углу FBC, поскольку они опираются на одну дугу DC.
Поэтому треугольник BFC равнобедренный, и N - середина BF.
Точно так же доказывается равенство углов ВЕС и ВСЕ (они оба равны углу ADB), то есть ВЕС - равнобедренный треугольник, и N - середина ЕС.
Поэтому ВЕFC - четырехугольник, у которого диагонали перпендикулярны и делятся точкой пересечения пополам. То есть это ромб.
Поэтому EF = 1.