1.Через параллельные прямые НН1 и КК1 проведем плоскость бетта (две параллельные прямые определяют плоскость) . 2.Отрезок МН принадлежит этой плоскости, т. к. две его точки М и К принадлежат этой плоскости. Значит, точка М лежит на прямой Н1К1. 3.В плоскости бетта мы имеем два треугольника МНН1 и МКК1. (Они подобны по двум углам). Вычисления: 1.МК1:К1Н1= 6:5, т. е. МК1 = 6*К1Н1/5 2.МН1 = МК1+К1Н1 = 6*К1Н1/5 +К1Н1 = 11*К1Н1/5 3.Т. е. наши треугольники подобны с коэффициентом подобия МН1/МК1 =(11*К1Н1/5) / (6*К1Н1/5) = 11/6 Значит, МН = 11МК/6 = 11/2 ответ:МН = 11МК/6 = 11/2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Покажите, что АВС=A¹ B¹C¹ если AB=A¹, B¹, ВС=B¹C¹и периметры треугольников равны.
2.Отрезок МН принадлежит этой плоскости, т. к. две его точки М и К принадлежат этой плоскости. Значит, точка М лежит на прямой Н1К1.
3.В плоскости бетта мы имеем два треугольника МНН1 и МКК1. (Они подобны по двум углам).
Вычисления:
1.МК1:К1Н1= 6:5, т. е. МК1 = 6*К1Н1/5
2.МН1 = МК1+К1Н1 = 6*К1Н1/5 +К1Н1 = 11*К1Н1/5
3.Т. е. наши треугольники подобны с коэффициентом подобия МН1/МК1 =(11*К1Н1/5) / (6*К1Н1/5) = 11/6
Значит, МН = 11МК/6 = 11/2
ответ:МН = 11МК/6 = 11/2