Объяснение:
Дано: MNKL - параллелограмм.
AL=NC; BM=KD.
Доказать: ABCD - параллелограмм.
Доказательство:
MNKL - параллелограмм. ⇒ MN║KL и ML║NK.
1) Рассмотрим ΔMBN и ΔLKD.
KD=MB (по условию)
MN=LK (свойство параллелограмма)
∠1=∠2 (соответственные при NM║LK и секущей BL.
∠3=∠2 (накрест лежащие при LB║ND и секущей LK.
⇒∠1=∠3.
ΔMBN и ΔLKD (по двум сторонам и углу между ними, 1 признак)
⇒ LD=BN; ∠5=∠4 (как соответственные элементы)
2) AD=AL+LD
BC=BN+NC
⇒AD=BC
3) ∠5=∠4 (п.1)
∠5=∠6 (соответственные при BL║DN и секущей ВС)
⇒∠4=∠6 - накрест лежащие при ВС и AD и секущей ND;
⇒ ВС ║ AD.
4) AD=BC (п.2)
ВС ║ AD (п.3)
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм.
⇒ABCD - параллелограмм
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что уравнение х^2 + y^2 + z^2 - 2x – 2у – 2 = 0 является уравнением сферы; укажите координаты центра и радиус этой сферы.
Объяснение:
Дано: MNKL - параллелограмм.
AL=NC; BM=KD.
Доказать: ABCD - параллелограмм.
Доказательство:
MNKL - параллелограмм. ⇒ MN║KL и ML║NK.
1) Рассмотрим ΔMBN и ΔLKD.
KD=MB (по условию)
MN=LK (свойство параллелограмма)
∠1=∠2 (соответственные при NM║LK и секущей BL.
∠3=∠2 (накрест лежащие при LB║ND и секущей LK.
⇒∠1=∠3.
ΔMBN и ΔLKD (по двум сторонам и углу между ними, 1 признак)
⇒ LD=BN; ∠5=∠4 (как соответственные элементы)
2) AD=AL+LD
BC=BN+NC
⇒AD=BC
3) ∠5=∠4 (п.1)
∠5=∠6 (соответственные при BL║DN и секущей ВС)
⇒∠4=∠6 - накрест лежащие при ВС и AD и секущей ND;
⇒ ВС ║ AD.
4) AD=BC (п.2)
ВС ║ AD (п.3)
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм.
⇒ABCD - параллелограмм