Мария
?>

Определите два прилежащих угла АОВ и ВОС, зная, что их сумма равна 238° и продолжение стороны АО (за вершину) делит угол ВОС пополам. (Два угла называются прилежащими, когда они имеют общую вершину, по одной общей стороне, а две другие лежат по обе стороны общей стороны.)

Геометрия

Ответы

maxchuev
Заданный четырёхугольник АРТС - равнобедренная трапеция.
В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4.
Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х.
Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36).
Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36).
По свойству вписанной окружности суммы оснований и боковых сторон равны.
3х + 3х = 2√(х² - 36) + 8√(х² - 36).
6х = 10√(х² - 36). Возведём обе части в квадрат.
64х² = 100х² - 3600.
64х² = 3600.
 х = √3600/√64 = 60/8= 15/2.
Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определите два прилежащих угла АОВ и ВОС, зная, что их сумма равна 238° и продолжение стороны АО (за вершину) делит угол ВОС пополам. (Два угла называются прилежащими, когда они имеют общую вершину, по одной общей стороне, а две другие лежат по обе стороны общей стороны.)
Ваше имя (никнейм)*
Email*
Комментарий*