beglovatatiyana
?>

Вычислите периметр треугольника MBN, если MN - средняя линия равностороннего треугольника ABC! Известно, что стороны треугольника ABC равны 6 см и 12 см

Геометрия

Ответы

supercom-ru-marinaguseva4267

Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности ({\displaystyle R=t}R=t), поскольку {\displaystyle 2\sin {\frac {\pi }{6}}=1}2\sin {\frac {\pi }{6}}=1.

Все углы равны 120°.

Радиус вписанной окружности равен:

{\displaystyle r={\frac {\sqrt {3}}{2}}R={\frac {\sqrt {3}}{2}}t}r={\frac {{\sqrt 3}}{2}}R={\frac {{\sqrt 3}}{2}}t

Периметр правильного шестиугольника равен:

{\displaystyle P=6R=4{\sqrt {3}}r}P=6R=4{\sqrt 3}r

Площадь правильного шестиугольника рассчитывается по формулам:

{\displaystyle S={\frac {3{\sqrt {3}}}{2}}R^{2}={\frac {3{\sqrt {3}}}{2}}t^{2}}S={\frac {3{\sqrt 3}}{2}}R^{2}={\frac {3{\sqrt 3}}{2}}t^{2}

{\displaystyle S=2{\sqrt {3}}r^{2}}S=2{\sqrt 3}r^{2}

Шестиугольники замощают плоскость (то есть могут заполнять плоскость без пробелов и наложений).

Правильный шестиугольник со стороной {\displaystyle {\frac {1}{\sqrt {3{\frac {1}{{\sqrt 3}}} является универсальной покрышкой, то есть всякое множество диаметра 1 можно покрыть правильным шестиугольником со стороной

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите периметр треугольника MBN, если MN - средняя линия равностороннего треугольника ABC! Известно, что стороны треугольника ABC равны 6 см и 12 см
Ваше имя (никнейм)*
Email*
Комментарий*