1)нехай сторона першого шестикутника а1=3х, другого а2=5х
s=6a^2 / 4tg(360/2*6) s=6a^2 / 4tg30
s1=72cm^2 s1/s2 =(3x)^2 /(5x)^2 =9/25
s2 =25*s1 /9 s2=200cm^2
margarita25061961
05.07.2021
1. аксиомы принадлежности. 1.1. через две различные точки проходит единственная прямая. 1.2. на каждой прямой имеются, по крайней мере, две точки, ей принадлежащие. 1.3. существуют три точки, не принадлежащие одной прямой. 1.4. через каждые три точки, не принадлежащие одной прямой, проходит единственная плоскость. 1.5. на каждой плоскости имеется, по крайней мере, одна точка, ей принадлежащая. 1.6. если две точки прямой принадлежат плоскости, то и вся прямая лежит на этой плоскости. 1.7. если две плоскости имеют общую точку, то они имеют, по крайней мере, еще одну общую точку. 1.8. существуют четыре точки, не принадлежащие одной плоскости. 2. аксиомы порядка. 2.1. из любых трех различных точек прямой одна и только одна лежит между двумя другими. 2.2. для любых двух точек прямой существует такая третья точка на этой прямой, что вторая лежит между первой и третьей. 2.3. если прямая лежит на плоскости, определяемой тремя точками a, b, c, не проходит ни через одну из этих точек и пересекает отрезок ab, то она пересекает отрезок ac или отрезок bc. 3. аксиомы движения. 3.1. всякое движение является взаимно однозначным отображением пространства на себя. 3.2. если точки a, b и c лежат на одной прямой, причем c лежит между aи b, то всякое движение f переводит их в точки f(a), f(b), f(c), принадлежащие одной прямой, причем f(c) лежит между f( a) иf(b). 3.3. композиция двух движений является движением. 3.4. для всяких двух реперов, взятых в определенном порядке, существует одно и только одно движение, переводящее первый репер во второй ( репером называется произвольная тройка (a, a , a), где a –точка, a - луч с вершиной в этой точке, a – одна из двух полуплоскостей, определяемых лучом a). 4. аксиомы непрерывности. 4.1 (аксиома архимеда). пусть a0, a1 , b – три точки, принадлежащие одной прямой, причем точка a1 лежит между a0 и b. пусть, далее, f – движение, переводящее точку a0 в точку a1 и луч a0b в лучa1b. положим f(a1 )=a2 , f(a2 )=a3 ,… . тогда существует такое натуральное число n, что точка b находится на отрезке a n-1an. 4.2 (аксиома кантора). пусть a1, a2, … и b1, b2, … такие две последовательности точек, расположенных на одной прямой, что для любого n точки an и bn различны между собой и находятся на отрезкеa n-1bn-1 . тогда на этой прямой существует такая точка c, которая принадлежит всем отрезкам anbn . 5. аксиома параллельности. 5.1. через точку, не лежащую на данной прямой, можно провести в их плоскости не более одной прямой, не пересекающей данную прямую. а.д.александров в книге [2] к основным объектам планиметрии относит точки и отрезки, а к основным отношениям: точка является концом отрезка, точка лежит на отрезке, равенство отрезков. аксиомы подразделяются на линейные и плоскостные. линейные аксиомы. 1. аксиомы связи. 1.1 (аксиома существования). существует хотя бы один отрезок. у каждого отрезка есть два и только два конца. кроме того отрезок содержит другие точки: точки, лежащие на отрезке. 1.2 (аксиома проведения отрезка). любые две точки можно соединить отрезком и притом только одним. 1.3 (аксиома деления отрезка). всякая точка, лежащая на отрезке, делит его на два отрезка, т.е. если точка c лежит на отрезке ab, то она делит его на два отрезка ac и bc, которые не имеют общих внутренних точек. 1.4 (аксиома соединения отрезков). если точка c лежит на отрезке ab, а b на
diana8
05.07.2021
Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, пространственный» и μετρέω — «измеряю») — это раздел , в котором изучаются свойства фигур в пространстве. основными фигурами в пространстве являются точка, прямая и плоскость. в стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях по стереометрии решаются путем рассмотрения различных плоскостей, в которых выполняются планиметрические законы. не стоит путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторони правильних шестикутників відносяться як 3: 5, а s меншого з них 72 см2. знайти s більшого шестикутника.
1)нехай сторона першого шестикутника а1=3х, другого а2=5х
s=6a^2 / 4tg(360/2*6) s=6a^2 / 4tg30
s1=72cm^2 s1/s2 =(3x)^2 /(5x)^2 =9/25
s2 =25*s1 /9 s2=200cm^2