ответ: Задачи тысячелетия
Объяснение: семь математических проблем, определённых Математическим институтом Клэя в 2000 году как «важные классические задачи, решение которых не найдено вот уже в течение многих лет», за решение каждой из которых обещано вознаграждение в 1 млн долларов США. Существует историческая параллель между задачами тысячелетия и списком проблем Гильберта 1900 года, оказавшим существенное влияние на развитие математики в XX веке; из 23 проблем Гильберта большинство уже решены, и только одна — гипотеза Римана — вошла в список задач тысячелетия.
Поделитесь своими знаниями, ответьте на вопрос:
Докажите что если через данную точку к окружности проведены две касательные то отрезки касательных соединяющий данную точку с точкой касания равны
10)
1. AO=OK (по условию)
2. OC - общая сторона
3. т.к.
углы АОВ и АОС - смежные АОС= 180 - АОВ
углы КОВ и КОС - смежные КОС = 180 - КОВ
КОВ = АОВ (по условию) значит
АОС = 180 - АОВ = 180 - КОВ = КОС
4. треугольники АОС и КОС равны по двух сторонам и углу между ними
9)Треугольники АВК и МКС равны по двум сторонам и углу между ними (первый признак), так как ВК=МК, АК=КС (дано) и угол АКВ равен углу СКМ, как вертикальные.
8)Рассмотрим ΔAOK и ΔBOC : СО=ОА по условию,ВО=ОК по условию,∠СОВ=∠КОА как вертикальные. Значит ΔAOK = ΔBOC по первому признаку равенства треугольников :"Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны"
5)по 1 признаку
3)треугольник АЕО =ВКС т.к
1) АЕ=СК (по условию)
2) ЕО=СВ (по условию)
3) угол АОЕ=ВСК (по условию)
2)1.
Рассмотрим ∆ABC и ∆AKC:
AC - общая; BC=KC; ∠ACK=∠ACB.
∆ABC = ∆AKC по двум сторонам и углу между ними.
2.
Рассмотрим ∆CBO и ∆AKO:
KO=CO; AO=BO; ∠AOK=∠BOC.
∆CBO = ∆AKO по двум сторонам и углу между ними.
1)1.
Рассмотрим ∆ABC и ∆AKC:
AC - общая; BC=KC; ∠ACK=∠ACB.
∆ABC = ∆AKC по двум сторонам и углу между ними.
Объяснение: