natura-domA90
?>

Скажите утверждения о пропорциональных отрезках в прямоугольном треугольнике

Геометрия

Ответы

nekrasovaolga27

1.высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.

2. катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла

stailwomen31

Докажем сначала следующее вс утверждение. Геометрическое место точек X, лежащих внутри трапеции ABCD (BC || AD) или на её сторонах, и таких, что S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD, есть отрезок, соединяющий середины оснований трапеции.

Действительно, пусть P и Q — середины оснований BC и AD трапеции ABCD, h - высота трапеции . Если точка X принадлежит отрезку PQ, то XP и XQ — медианы треугольников BXC и AXD, поэтому

Кроме того,

SABPQ = $\displaystyle {\frac{BP + AQ}{2}}$ . h = $\displaystyle {\frac{CP + DQ}{2}}$ . h = SCPQD.

Следовательно, S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD.

Пусть теперь X — точка внутри трапеции ABCD, для которой S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD (рис.2). Предположим, что X не лежит на прямой PQ. Поскольку S$\scriptstyle \Delta$XBP = S$\scriptstyle \Delta$XCP и S$\scriptstyle \Delta$XAQ = S$\scriptstyle \Delta$XDQ, то

SABPXQ = SCPXQD = $\displaystyle {\textstyle\frac{1}{2}}$SABCD.

Если точки X и C лежат по одну сторону от прямой PQ, то

$\displaystyle {\textstyle\frac{1}{2}}$SABCD = SABPQ + S$\scriptstyle \Delta$PXQ = $\displaystyle {\textstyle\frac{1}{2}}$SABCD + S$\scriptstyle \Delta$PXQ,

что невозможно. Аналогично для случая, когда точки X и C лежат по разные стороны от прямой PQ.

Пусть теперь ABCDEF — данный шестиугольник; AB || DE, BC || EF, CD || AF. Докажем, что треугольники ACE и BDF равновелики. В самом деле, пусть прямые AB и EF пересекаются в точке M, прямые AB и CD — в точке N, прямые CD и EF — в точке K (рис.2). Обозначим

$\displaystyle {\frac{MA}{MN}}$ = x, $\displaystyle {\frac{NC}{NK}}$ = y, $\displaystyle {\frac{KE}{KM}}$ = z.

Тогда

S$\scriptstyle \Delta$AME = x(1 - z)S$\scriptstyle \Delta$MNK, S$\scriptstyle \Delta$ANC = y(1 - x)S$\scriptstyle \Delta$MNK, S$\scriptstyle \Delta$CKE = z(1 - y)S$\scriptstyle \Delta$MNK.

Поэтому

S$\scriptstyle \Delta$ACE = S$\scriptstyle \Delta$MNK - S$\scriptstyle \Delta$AME - S$\scriptstyle \Delta$ANC - S$\scriptstyle \Delta$CKE =

= (1 - x(1 - z) - y(1 - x) - z(1 - y))S$\scriptstyle \Delta$MNK = (1 - x - y - z + xy + xz + yz)S$\scriptstyle \Delta$MNK.

Учитывая, что

$\displaystyle {\frac{MF}{MK}}$ = $\displaystyle {\frac{MA}{MN}}$ = x, $\displaystyle {\frac{NB}{NM}}$ = $\displaystyle {\frac{NC}{NK}}$ = y, $\displaystyle {\frac{KD}{KN}}$ = $\displaystyle {\frac{KE}{KM}}$ = z

(что вытекает из параллельности противоположных сторон данного шестиугольника), аналогично получим, что

S$\scriptstyle \Delta$BDF = (1 - x - y - z + xy + xz + yz)S$\scriptstyle \Delta$MNK.

Следовательно, S$\scriptstyle \Delta$ACE = S$\scriptstyle \Delta$BDF.

Пусть P, G, Q, H — середины отрезков AF, AB, CD и DE соответственно; O — точка пересечения отрезков PQ и GH (рис.3). Тогда, по ранее доказанному,

S$\scriptstyle \Delta$AOC = S$\scriptstyle \Delta$DOF, S$\scriptstyle \Delta$AOE = S$\scriptstyle \Delta$BOD, S$\scriptstyle \Delta$ACE = S$\scriptstyle \Delta$BDF.

Поэтому

S$\scriptstyle \Delta$BOF = S$\scriptstyle \Delta$BDF - S$\scriptstyle \Delta$DOF - S$\scriptstyle \Delta$BOD =

= S$\scriptstyle \Delta$ACE - S$\scriptstyle \Delta$AOC - S$\scriptstyle \Delta$AOE = S$\scriptstyle \Delta$OCE.

Следовательно, точка O принадлежит отрезку, соединяющему середины сторон BC и EF.

Другие решения: см. Квант, N5, 1986, с.33

Объяснение:

Рамиль211

Из условия известно, что стороны прямоугольника равны 8 дм и 1,5 м (=15 дм). Для того, чтобы найти диагональ прямоугольника рассмотрим прямоугольный треугольник образованный сторонами прямоугольника и диагональю.

Стороны прямоугольника это катеты прямоугольного треугольника, а диагональ прямоугольника — гипотенуза.

Для нахождения гипотенузы будем использовать теорему Пифагора.

Сумма квадратов катетов равна квадрату гипотенузы.

a^2 + b^2 = c^2;

8^2 + 15^2 = c^2;

64 + 225 = c^2;

c^2 = 289;

c = 17 дм. диагональ прямоугольника

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Скажите утверждения о пропорциональных отрезках в прямоугольном треугольнике
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mary---jane49
Voronina747
drozd2008
Fruktova Gazaryan
Константин Андрей
Bezzubova_Stepanov1355
Владимирович_Слабый
orion-inginiring7807
Шиморянов Мария1866
gorod7
denchiklo2299667
azarov8906
Виктор Попова
prettymarina2015
Белов_Лукина1339