Дано: Δabc — прямокутний, де a, b — катети, c — гіпотенуза. c:a = 5:3, b = 16 cm.
Знайти: радіус описаного кола r, площу трикутника .
Рішення:
Нехай невідомий катет b = 3x cm, гіпотенуза c = 5x cm, а відомий катет a = 16 cm. Складемо математичну модель відповідно до т. Піфагора і вирішимо її:
Від'ємний корів відкидаємо, т.я. довжина не може бути від'ємною.
Тоді:
невідомий катет b = 3x = 3·4 = 12 cmгіпотенуза c = 5x = 5·4 = 20 cmПідставимо значення у формулу площі прямокутного трикутника:
Гіпотенуза прямого трикутника рівна діаметру описаного кола:
c = d = 20 cm
Радіус кола рівний половині діаметра:
r = d/2 = 20/2 = 10 cm
Відповідь: r = 10 cm, S = 96 cm².
Поделитесь своими знаниями, ответьте на вопрос:
Постройте ∆rst, у которого rs = 5 см, rt = 3 см и угол r = 35°. если можно то прикрепите решение, заранее .
Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
AxAxy = 2; AxAxz = 3; AyAxy = 1; AyAyz = 3; AzAxz = 1; AzAyz = 2;
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Объяснение: