Объяснение:
1)Пусть АВС-равнобедренный треугольник,АС-основание=12 см.
АВ=ВС=10 см
Проведем высоту ВН
Так как треугольник равнобедренный,то высота,проведенная к основанию,является и медианой,и биссектрисой.
Так как ВН-высота,то образуется прямоугольный треугольник АВН,причем из-за того,что ВН ещё и медиана,то АН=НС=12/2=6см.
Теперь по теореме Пифагора находим катет ВН
ВН=корень из(АВ^2-АН^2)
ВН=корень из(64)
ВН=8см
Sтреугольника АВС=(ВН*АС)/2
S=(8*12)/2
S=48 кв. см
ответ:48 кв.см.
2)параллелограмм ABCD
Проведём из угла В на AD высоту BK.
∆ABK-прямоугольный. ےА=30°
Следовательно BK=AB:2, как катет, лежащий против угла 30°
AB=12. Тогда BK=6; S=16×6=96 кв.см.
ответ:96 кв.см.
3)Дано:
АВСD-трапеция,
АВ=СD=13 см.
АD=20см
ВС=10см
Найти:S
Проводим высоту ВН,так как трапеция равнобедренная,то АН будет равен (20-10)/2=5 см
Образовался прямоугольный треугольник АВН,находим катет(высоту) ВН
ВН=корень из(АВ^2-AH^2)
ВН=корень из(169-25)
ВН=12 см.
S=((АD+ВС)/2)*ВН
S((20+10)/2)*12=180 кв.см.
ответ:180 кв.см
Поделитесь своими знаниями, ответьте на вопрос:
Лучи ав и ас касаются окружности с центром о в точках в и с вас=68 найдите осв
В условии неточность. Должно быть так:
А(- 1; √3), В(1; - √3), С(1/2; √3)
Найдем длины сторон треугольника АВС по формуле:
d = √((x₁ - x₂)² + (y₁ - y₂)²)
AB = √((- 1 - 1)² + (√3 + √3)²) = √(4 + 12) = √16 = 4
AC = √((- 1 - 0,5)² + (√3 - √3)²) = √1,5² = 1,5
BC = √((1 - 0,5)² + (- √3 - √3)²) = √(0,25 + 12) = √12,25 = 3,5
По теореме косинусов:
cos∠A = (AB² + AC² - BC²) / (2 · AB · BC)
cos∠A = (16 + 2,25 - 12,25) / (2 · 4 · 1,5) = 6 / 12 = 0,5
∠A = 60°
cos∠B = (AB² + BC² - AC²) / (2 · AB · BC)
cos∠B = (16 + 12,25 - 2,25) / (2 · 4 · 3,5) = 26 / 28 ≈ 0,9286
∠B ≈ 22°
∠C = 180° - (∠A + ∠B) ≈ 180° - (60° + 22°) ≈ 98°
Объяснение:
вот мой ответ)