Anastasiya Yevseeva948
?>

Даны тупоугольный и остроугольный треугольники.в данных треугольниках измерили величины углов.получили: 120 градусов, 80, 55 и 10.найдите меньший угол в остроугольном треугольнике.

Геометрия

Ответы

natkul22

1) для того, чтобы треугольник был остроугольный каждый угол должен быть меньше 90, а сумма их 180. поэтому градусные меры в качестве углов треугольника 120, 80, 10 не подходят.

2) остается вариант 80 и 55. тогда третий угол равен 180 - (80 + 55) = 45.

ответ: 45

 

 

 

 

zrs-546

ну если не ошибаюсь то решать так  80+55+45

alexst123012225

1. \displaystyle \bf y'=-\frac{4x^3+cosx}{3y^2}

2. \displaystyle \bf y'(x)=-\frac{2}{t^2cost}

3. \displaystyle \bf y_k=-0,06x+0,72;

\displaystyle \bf y_n=\frac{50}{3}x+50,9.

Объяснение:

1. Найти производную функции у(х), которая задана неявно уравнением:

\displaystyle x^4+y^3+sinx=0

Так как у является функцией от х, то будем рассматривать у³ как сложную функцию от х.

\displaystyle 4x^3+3y^2\cdot y'+cosx=03y^2\cdot y'=-4x^3-cosxy'=\frac{-4x^3-cosx}{3y^2}

\displaystyle \bf y'=-\frac{4x^3+cosx}{3y^2}

2. Найдите производную функции y (x), заданную параметрически.

\displaystyle \left \{ {{x=sint} \atop {y=\frac{2}{t} }} \right.

Формула производной для функции, заданной параметрически:

\boxed {\displaystyle \bf y'(x)=\frac{y'(t)}{x'(t)} }

Найдем x'(t) и y'(t):

\displaystyle x'(t)=cost\\ \\ y'(t)=-\frac{2}{t^2}

\displaystyle \bf y'(x)=-\frac{2}{t^2cost}

3. Найти уравнение касательной и нормали к графику функции y= f(x) в точке абсциссой x₀.

\displaystyle y=\frac{x^2}{x^2+1} ,\;\;\;\;\;x_0=-3

Найдем производную:

\displaystyle y'=\frac{(x^2)'\cdot (x^2+1)-x^2\vdot(x^2+1)'}{(x^2+1)^2} =\frac{2x\cdot(x^2+1)-x^2\cdot 2x}{(x^2+1)^2} ==\frac{2x^3+2x-2x^3}{(x^2+1)^2} =\frac{2x}{(x^2+1)^2}

Найдем значение функции и ее производной в точке x₀ = -3.

\displaystyle y(-3)=\frac{9}{9+1 }=\frac{9}{10}=0,9

\displaystyle y'(-3)=\frac{-6}{(9+1)^2}=-\frac{6}{100} =-0,06

Уравнение касательной:

\boxed {\displaystyle \bf y_k=y(x_0)+y'(x_0)(x-x_0)}

\displaystyle y_k=0,9+(-0,06)(x-(-3))=0,9-0,06(x+3)=\\ \\=0,9-0,06x-0,18=-0,06x+0,72

Получили уравнение касательной:

\displaystyle \bf y_k=-0,06x+0,72

Уравнение нормали:

\boxed {\displaystyle \bf y_n=y(x_0)-\frac{1}{y'(x_0)} (x-x_0)}

\displaystyle y_n=0,9-\frac{1}{-0,06} \cdot(x-(-3))=0,9+\frac{100}{6} (x+3)==0,9+\frac{50x}{3} +50=\frac{50}{3}x+50,9

Получили уравнение нормали:

\displaystyle \bf y_n=\frac{50}{3}x+50,9

#SPJ1

bulin2001

а) ∠BDE=∠BAC и ∠BED=∠BCA (как соответственные углы), значит треугольники BDE и BAC подобны по двум углам

б) Углы, отмеченные на рисунке черным цветом, равны по условию. Также у треугольников имеется общий угол (см. приложенный рисунок), значит большой и маленький треугольник подобны по двум углам

в) ∠CBO=∠ODA и ∠BCO=∠OAD (как накрест лежащие углы), значит треугольники BCO и OAD подобны по двум углам

г) Треугольники подобны по двум сторонам: 2/4=6/12=7/14

д) Углы, отмеченные на рисунке черным цветом, равны по условию. Углы, отмеченные синим (см. приложенный рисунок) равны, так как являются вертикальными. Получается, треугольники подобны по двум углам


Докажите что треугольники подобны

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны тупоугольный и остроугольный треугольники.в данных треугольниках измерили величины углов.получили: 120 градусов, 80, 55 и 10.найдите меньший угол в остроугольном треугольнике.
Ваше имя (никнейм)*
Email*
Комментарий*