Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.
Алгоритм
Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.
Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.
Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.
Точка пересечения прямой и плоскости
Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .
Видимость прямой a относительно плоскости α. Метод конкурирующих точек
Определение видимости прямой
Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.
Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.
Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.
Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.
Поделитесь своими знаниями, ответьте на вопрос:
Сторона правильного треугольника равна 2корень из 3, к плоскости треугольника проведен перпендикуляр ак длиной 4 см.найти расстояние от точки к до стороны вс. желательно с !
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2).
в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат.
То есть это точка D(1,5;-2).