В4
<BDA=<CBD=45 градусов как накрест лежащие
Тр-к АВD:
По теореме синусов :
АD/sin<ABD=AB/sin<BDA=ВD/sinBAD
(4корень6) /sin60=AB/sin45
AB=(4корень6) ×(корень2 /2)/sin60=
=2корень12 : (корень3 /2)=
=2корень12×2/корень3 =
=(4×корень12×корень3)/3=
=(4×корень36) /3=4×6/3=8 см
ответ : АВ=8 см
В5
Диагонали пересекаются и точкой пересечения делятся пополам:
АО=CO=АС:2=20:2=10 см
ВO=DO=BD:2=18:2=9 cм
Тр-к АВО:
По теореме косинусов:
cos<AOB=(AO^2+BO^2-AB^2) /(2×AO×BO)=
=(10^2+9^2-17^2)/(2×10×9)=
= - 108/180= - 3/5= - 0,6
<AOB=126,8699
S=(AC×BD×sin<AOB) /2
S=(20×18×sin(126,8966))/2=
=180×sin(126,8966)≈180×0,8=144 cм^2
ответ :S=144 cм^2
АВСД - прямоуг. трапеция , АД║ВС , ∠А=∠В=90° , ВС=ВД
СН⊥АД , СН∩ВД=К , СК=20 см , КН=12 см .
СК:КН=20:12 ⇒ СК:КН=5:3
ΔВСД - равнобедренный, т.к. ВС=СД ⇒ ∠ВСД=∠СДВ .
∠ВСД=∠ВДА как накрест лежащие при параллельных АД и ВС и
секущей ВД ⇒
∠СВД=∠ВДА ⇒ ВД - биссектриса
ΔСДН: ВК - биссектриса, по свойству биссектрисы:
СК:СД=КН:ДН ⇒ СД:ДН=5:3 ⇒ СД=5х , ДН=3х .
СН²=СД²-ДА²=(5х)²-(3х)²=16х² ⇒ СН=4х , 4х=(20+12) , 4х=32 , х=8
СД=5·8=40 (см) , ДН=3·8=24 (см)
ВС=СД=40 см ⇒ АН=ВС=40 см ( как противоположные стороны прямоугольника АВСН ⇒ АД=АН+НД=40+24=64 (см)
S(АВСД)=(АД+ВС):2·СН=(64+40):2·32=1664 (см²)
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали равнобокой трапеции взаимно перпендикулярны основания трапеции равны 7 см и 13 см найдите площадь трапеции
s=a+b/2*h
h=13+7/2=5
s=13+7/2*5=50