соединив середины исходного треугольника, получим треугольник со сторонами, равными половине его сторон.
окружность, проходящая через середины сторон исходного треугольника - это окружность,описанная вокруг получившегося.
радиус описанной вокруг этого треугольника окружности в данной может быть найден по формулеr=abc: 4sгде a, b, c - стороны треугольника, s- его площадь. площадь найдем по формуле герона. она равна приблизительно 4,33 см²r=4·3,5·2,5: 4·4,33
r=35: 17,32= примерно 2 см
abcd - трапеция, ac = 13,6 см, средняя линия nm = 12 см.
опустим из точки c на основание ad высоту ck.
по свойству равнобокой трапеции, высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований. в нашем случае ak = (ad+bc)/2.
в то же время средняя линия трапеции также равна полусумме оснований, то есть nm=(ad+bc)/2=ak=12 см.
рассмотрим треугольник ack. он прямоугольный, т.к. ck - высота. по т.пифагора
тогда площадь abcd равна
Поделитесь своими знаниями, ответьте на вопрос:
Прямые ам и kd пересечены bc cоответственно в точках о и е угол kec=45 угол moc в 3 раза больше угла aoe докажите что amпаралельныkd
мос и аое - смежные, мос=3аое => мос+аое=4аое=180; аое=45=кес а это соответственные углы при прямых ам и kd => аm||kd