NikolaevichIP1136
?>

Решите ! со всем объяснением и решением.подробно и внятно: в треугольнике abc известно, что угол a тупой. к сторонам ab=3 и ac=9 проведены высоты, одна из которых равна 3. найдите вторую высоту.

Геометрия

Ответы

Prostofil200790

высота, проведенная к стороне ас не может быть равна 3 в треугольнике bea, и тогда гипотенуза ва равнялась бы катету ве. значит, высота, равная 3 - кс.  находим sincak=3/9=1/3.  cak=bae=sin bae=sincak.  sin bak=be/ba=1/3=> be=1.

Николаевич-Золотая832

28) Рисунок к этой задаче аналогичен рисунку 66 к задаче 27, только вместо точки О дана точка К на продолжении ребра Д1С1  и вместо АС основа трапеции будет А1Д.

В сечении получается равнобокая трапеция с основанием А1Д = √2.

В верхней грани верхнее основание трапеции равно половине А1Д, то есть √2/2.

Средняя линия трапеции равна L = (√2 + (√2/2))/2 = 3√2/4.

Боковое ребро равно √(1² + (1/2)²) = √(1 + (1/4)) = √5/2.

Проекция бокового ребра на основание трапеции равна

(1/2)*(√2 - (√2/2)) = √2/4.

Находим высоту h трапеции.

h = √((√5/2)² - (√2/4)²) = √((5/4) - (2/16)) = √((20 - 2)/16) = √(18/16) = 3√2/4.

ответ: S = Lh = (3√2/4)*(3√2/4)  = 18/16 = 9/8 = 1,125.

борисовна Елена78

Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.

Алгоритм

Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.

Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.

Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.

Точка пересечения прямой и плоскости

Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .

Видимость прямой a относительно плоскости α. Метод конкурирующих точек

Определение видимости прямой

Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.

Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.

Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.

Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.


Найти точку пересечения прямой общего положения с проецирующей прямой
Найти точку пересечения прямой общего положения с проецирующей прямой

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите ! со всем объяснением и решением.подробно и внятно: в треугольнике abc известно, что угол a тупой. к сторонам ab=3 и ac=9 проведены высоты, одна из которых равна 3. найдите вторую высоту.
Ваше имя (никнейм)*
Email*
Комментарий*