Параллелограмм ABCD.
∠ABE = 60˚
AB = 16 см
ВЕ - высота.
ВС = 20 см.
Найти:S = ? см².
Решение:△АВЕ - прямоугольный, так как ВЕ - высота, по условию.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВАЕ = 90° - 60° = 30°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВЕ = 16/2 = 8 см.
У параллелограмма противоположные стороны равны.
=> ВС = AD = 20 см.
S = AD * BE (сторона и высота, которая опущена к этой стороне)
=> S = 20 * 8 = 160 см²
ответ: 160 см²трапеция;
∠DAC = 63˚;
∠ACJ = 27˚;
D₂K = 10;
IJ = 12.
D₂К соединяет середины отрезков DE и AC.
IJ соединяет середины отрезков AD и EC.
Найти:(AC * DE) * 1/2 = ?
Решение:Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
(AC * DE) * 1/2 = (22 * 2) * 1/2 = 44 * 1/2 = 44/2 = 22.
ответ: (AC * DE) * 1/2 = 22.Поделитесь своими знаниями, ответьте на вопрос:
Основнием пярмой призмы является ромб со стороной 3 и острым углом 60°. большее из двух сечений, которые проходят через пары боковых ребёр, не принадлежащих одной грани, является квадратом. чему равна его площадь. заранее
у большего сечения сторонами будут: боковое ребро и большая диагональ основания. так как сечение - квадрат, то его стороны равны. найдем большую диагональ основания. в основании - ромб. большая диагональ (d) лежит против большего угла, равного 180 - 60 = 120 градусов. тогда по теореме косинусов: d^2 = 9+9 - 2*3*3*cos120 = 18 + 9 = 27 , d = 3sqrt3
мы нашли сторону квадрата (сечения). его площадь равна d^2 = 27