Итак, нам дана площадь ΔACE равная 85.
∠AEC = ∠CED = 90
AE = ED
CE общая для ΔACE и ΔCED
Следовательно, треугольники ACE и CED равны, так как у них равны стороны и угол между ними. Следовательно, площадь AEC = CED = 85
Из формулы площади прямоугольного треугольника S = a*b/2 найдём AE:
AE = S*2/EC = 85 * 2 / 17 = 10
AE ║BC так как это трапеция. Опустим высоту из точки А на прямую BC. Получим прямоугольный треугольник AOB (представим его мысленно). Так вот, его площадь надо будет вычесть из площади прямоугольника AECO. Вычислим:
Площадь AOB = 17*(10-6)/2=34
Итак, общая площадь трапеции равна:
17*10 - 34 + 85 = 221
ответ: 221
т.к. сторона ав делится как 3: 2, то ам=3х, мв=2х.для решения проведите радиусы окружности в точки касания, обозначьте точки буквами: на стороне ав - м, на стороне вс -n, на ас -f. радиусы, проведенные в точку касания перпендикулярны касательной. получаются прямоугольные треугольники мво и воn. эти треугольники равны по катету и гипотенузе.значит, мв=вn=2х. аналогично ам=аf=3х, сn=cf=5. периметр-это сумма длин всех сторон треугольника: 3х+3х+2х+2х+5+5=30
10х=20, х=2. подставляя, получаем, что ас=11см.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке: oa=ob; bd=ac. точка e – точка пересечения прямых ad и bc. докажите, что oe – биссектриса угла doc. указание: для решения необходимо воспользоваться тремя различными признаками равенства для различных пар треугольников.
по свойству биссектрисы все ее точки равноудалены от нее,треугольники еов и еоа равны,значит точки а и в равноудалены от ое
значит ое биссектрисса по равенству углов аое и вое