Номер 3:
Угол ROL - центральный угол. Центральный угол равен дуге, на которую он опирается. То есть ∪ RL (дуга RL) = 70°.
Тогда угол RKL будет вписанным. А вписанный угол равен половине дуги, на которую он опирается. Так как ∪ RL = 70°, то угол RKL будет равен 0,5 * 70° = 35°.
В треугольнике OKL стороны OL и OK будут равны, так как это радиусы окружности, а значит такой треугольник - равнобедренный. Так что угол OLK = углу OKL. Угол OLK = 35°, что и требовалось найти.
Номер 4:
CB - диаметр окружности, так как проходит через её центр, а диаметр делит окружность на две равные части, каждая из которых равна 180°.
∪ CB = 140° + ∪ AB = 180°
Отсюда следует, что ∪ AB = 180° - 140° = 40°
А значит вписанный угол x будет равен: 0,5 * 40° = 20°
Номер 7:
Окружность равна 360°.
∪ RQ = 360° - ∪ RS - ∪ SQ = 360° - 90° - 130° = 140°.
Тогда вписанный угол x будет равен: 0,5 * 140° = 70°.
Номер 8:
Угол AOB - центральный угол. Это значит, что его градусная мера равна ∪ AB. Отсюда следует, что дуга AB = 100°.
Тогда вписанный угол x = 0,5 * 100° = 50°.
Надеюсь
Построим координатный параллелепипед точки А. Отметим на оси х — Ах(1;0;0); у — Ау(0;2;0); z — Аz (0;0;3).
Затем из точки Ах проведем две прямые, параллельную оси у и оси z, из точки Ау — прямые параллельные оси x и оси z; из Аz — параллельные оси х и оси у.
При пересечении прямых получаются точки Аху, Ауz, Ахz. Тогда
AxAxy = 2; AxAxz = 3; AyAxy = 1; AyAyz = 3; AzAxz = 1; AzAyz = 2;
Перпендикулярами на координатные оси будут отрезки ААz ААу; АAх на координатные плоскости αху, Ауz АХz. Получаем что основания перпендикуляров: Аху(1;2;0), Аyz(0;2;3), Аxz(1;0;3).ответ:
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Равнобочная трапеция с основаниями 12 см и 28 см и высотой 6 смв первый раз вращаетсяоколо меньшего основания, а во второй-около большего. сравните площади трапеции
в 1 случае телом вращения будет цилиндр с вырезанными конусами, т.е площадь боковой поверхности тела вращения будет площадью боковой поверхности этого цилиндра, т.е s=2pi*r*l, где r=6, l=28
s=336pi
во 2 случае телом вращения будет цилиндр с добавленными к основаниям конусами, т.е площадь боковой поверхности тела вращения будет площадью боковой поверхности этого цилиндра, т.е s=2pi*r*l, где r=6, l=12
s=144pi