Все просто. сначала по фромуле ищем площадь трапеции: сумма оснований пополам и умножить на высоту. подставляем: 12: 2*3=18см^2. далее, ищем площадь квадрата 18*3=54см^2. площадь квадрата s=a^2 . подставляем s=корень из 54. извлечешь сама
krasnobaevdj3
20.10.2020
1)нет не может быть параллельной плоскости бета 2)да может пересекать плоскость бета 3)нет не может лежать в плоскости бета оъяснение: естественно. эти прямые пересекаются. поскольку прямая а лежит в плоскости альфа, она не может пересечься с плоскостью бета в точке, не лежащей в плоскости альфа. следовательно, прямая а проходит через точку, лежащую одновременно в плоскостях альфа и бета. а такие точки образуют прямую с. следовательно, прямая а имеет общую точку с прямой с, причём единственную (поскольку она пересекается с плоскостью бета, то имеет с ней единственную общую точку). следовательно, эти прямые пересекаются.
Егоркина
20.10.2020
Второй признак равенства треугольников. теорема. если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны. доказательство. пусть у треугольников abc и a1b1c1 ∠ a = ∠ a1, ∠ b = ∠ b1, ab = a1b1. пусть a1b2c2 – треугольник, равный треугольнику abc. вершина b2 расположена на луче a1b1, а вершина с2 в той же полуплоскости относительно прямой a1b1, где лежит вершина с1. так как a1b2 = a1b1, то вершина b2 совпадает с вершиной b1. так как ∠ b1a1c2 = ∠ b1a1c1 и ∠ a1b1c2 = ∠ a1b1c1, то луч a1c2 совпадает с лучом a1c1, а луч b1c2 совпадает с лучом b1c1. отсюда следует, что вершина с2 совпадает с вершиной с1. треугольник a1b1c1 совпадает с треугольником a1b2c2, а значит, равен треугольнику abc. теорема доказана.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Длины оснований трапеции 5 и 7 см, высота 3 см.найдите длину стороны квадрата, площадь которого в 3 раза больше площади трапеции.