xalina85
?>

Вычислите 1000102 +1f16. результат запишите в десятичной системе счисления.

Информатика

Ответы

dashkevich-76611
Если цифры 2 и 16 это системы счисления то вот так: 100010 = 34,  1f = 31 или 11111 в двоичной 100010 + 11111 = 65 
rada8080

Объяснение:

качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супербомбы по гипотезе Улама-Теллера. Фон Нейман, который одновременно работал консультантом и в Лос-Аламосской лаборатории, и в Институте Мура, предложил группе Теллера использовать ЭНИАК для расчётов ещё в начале 1945 года. Решение проблемы термоядерного оружия требовало такого огромного объёма вычислений, что справиться с ним не могли никакие электромеханические калькуляторы, имевшиеся в распоряжении лаборатории. В августе 1945 физики Лос-Аламосской лаборатории Николас Метрополис и Стенли Френкель (англ.) посетили институт Мура, и Герман Голдстайн вместе со своей женой Адель, которая работала в команде программистом и была автором первого руководства по работе с ЭНИАКом[4], познакомили их с техникой программирования ЭНИАКа. После этого они вернулись в Лос-Аламос, где стали работать над программой под названием «The Los Alamos Problem».

Производительность ЭНИАКа была слишком мала для полноценного моделирования, поэтому Метрополис и Френкель сильно у уравнение, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу взрыва дейтерий-тритиевой смеси в одномерном Детали и результаты выполненных в ноябре–декабре 1945 года расчётов до сих пор засекречены. Перед ЭНИАКом была поставлена задача решить сложнейшее дифференциальное уравнение, для ввода исходных данных к которому понадобилось около миллиона перфокарт. Вводная задача была разбита на несколько частей, чтобы данные могли поместиться в память компьютера. Промежуточные результаты выводились на перфокарты и после перекоммутации снова заводились в машину. В апреле 1946[5] года группа Теллера обсудила результаты расчётов и сделала вывод, что они достаточно обнадёживающе (хотя и очень приблизительно) доказывают возможность создания водородной бомбы.

На обсуждении результатов расчёта присутствовал Станислав Улам. Поражённый скоростью работы ЭНИАКа, он предложил сделать расчёты по термоядерному взрыву методом Монте-Карло. В 1947 году на ЭНИАКе было выполнено 9 расчётов этим методом с различными исходными параметрами. После этого метод Монте-Карло стал использоваться во всех вычислениях, связанных с разработкой термоядерного оружия.

Британский физик Дуглас Хартри в апреле и июле 1946 года решал на ЭНИАКе проблему обтекания воздухом крыла самолета, движущегося быстрее скорости звука. ЭНИАК выдал ему результаты расчётов с точностью до седьмого знака. Об этом опыте работы Хартри написал в статье в сентябрьском выпуске журнала Nature за 1946 год[6].

В 1949 году фон Нейман использовал ЭНИАК для расчёта чисел π и e с точностью до 2000 знаков после запятой. Фон Неймана интересовало статистическое распределение цифр в этих числах. Предполагалось, что цифры в этих числах появляются с равной вероятностью, а значит — компьютеры могут генерировать действительно случайные числа, которые можно использовать как вводные параметры для вычислений методом Монте-Карло. Вычисления для числа e были выполнены в июле 1949 года, а для числа π — за один день в начале сентября. Результаты показали, что «цифры в числе π идут в случайном порядке, а вот с числом e всё обстояло значительно хуже» [7].

На ЭНИАКе весной 1950 года был произведён первый успешный численный прогноз погоды командой американских метеорологов Жюлем Чарни (англ.), Филипом Томсоном, Ларри Гейтсом, норвежцем Рагнаром Фьюртофтом (англ.) и математиком Джоном фон Нейманом. Они использовали упрощённые модели атмосферных потоков на основе уравнения вихря скорости для баротропного газа. Это упрощение понизило вычислительную сложность задачи и позволило произвести расчёты с использованием доступных в то время вычислительных мощностей[8]. Расчёты велись начиная с 5 марта 1950 года в течение 5 недель, пять дней в неделю в три 8-часовые смены. Ещё несколько месяцев ушло на анализ и оценку результатов. Описание расчётов и анализ результатов были представлены в работе «Numerical Integration of Barotropic Vorticity Equation»[9], опубликованной 1 ноября 1950 года в журнале Tellus. В статье упоминается, что прогноз погоды на следующие 24 часа на ЭНИАКе был выполнен за 24 часа, то есть прогноз едва успевал за реальностью. Большая часть времени уходила на распечатку перфокарт и их сортировку. Во время расчётов приходилось на ходу вносить изменения в программу и ждать замены перегоревших ламп. При должной оптимизации работы ЭНИАКа, говорилось в работе, расчёт можно было бы выполнить за 12 часов, а при использовании более совершенных машин — за 30 минут. Для прогноза использовались карты погоды над территорией США и Канады за 5, 30, 31 января и 13 февраля 1949 года. После расчётов прогнозные карты сравнивались с реальными для оценки качества прогноза[10]

Lenok33lenok89

использовать Чертежник

алг

нач

 опустить перо

 Д;И;М;А

 сместиться на вектор(1,0)

 Д;И;М;А

 сместиться на вектор(1,0)

 Д;И;М;А

кон

алг Д

нач

 опустить перо

 сместиться на вектор(0,3)

 сместиться на вектор(1,0)

 сместиться на вектор(0,-1)

 сместиться на вектор(-1,-0.5)

 поднять перо

 сместиться на вектор(2,-1.5)

кон

алг И

нач

 опустить перо

 сместиться на вектор(0,3)

 сместиться на вектор(0,-3)

 сместиться на вектор(1.5,3)

 сместиться на вектор(0,-3)

 поднять перо

 сместиться на вектор(1,0)

кон

алг М

нач

 опустить перо

 сместиться на вектор(0.75,3)

 сместиться на вектор(0.75,-3)

 сместиться на вектор(0.75,3)

 сместиться на вектор(0.75,-3)

 поднять перо

 сместиться на вектор(1,0)

кон

алг А

нач

 опустить перо

 сместиться на вектор(0.75,3)

 сместиться на вектор(0.75,-3)

 сместиться на вектор(0.75,3)

 сместиться на вектор(0.75,-3)

 поднять перо

 сместиться на вектор(1,0)

кон

Объяснение:

Вроде так

сорри если будет неправильно

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите 1000102 +1f16. результат запишите в десятичной системе счисления.
Ваше имя (никнейм)*
Email*
Комментарий*