происхождение этого символа неизвестно. традиционная гипотеза — средневековое сокращение латинского предлога ad (означает «к», «на», «до», «у», «при»). в 2000 году джорджио стабиле, профессор сапиенцы, выдвинул другую гипотезу. в письме, написанном флорентийским купцом в 1536 году, упоминалась цена одной «a» вина, причем буква «a» была украшена завитком и выглядела как «@»; согласно стабиле, это было сокращенное обозначение единицы измерения объема — стандартной амфоры. в испанском, португальском, французском языках символ @ традиционно означает арробу — старинную испанскую меру веса, равную 11,502 кг (в арагоне 12,5 кг); само слово происходит от арабского «ар-руб», что означает «четвёрть» (четверть ста фунтов). в 2009 году испанский хорхе романсе обнаружил сокращение арробы символом @ в арагонской рукописи taula de ariza написанной в 1448 году, почти за век до флорентийского письма, изученного стабиле. похожие на @ знаки встречаются в книгах xvi—xvii веков — в частности, на заглавном листе судебника ивана грозного (1550 обычно это украшенная завитком буква «аз», обозначающая в кириллической системе счисления единицу, в случае с судебником — первый пункт. название «коммерческое at» берёт своё происхождение из счетов, например, 7 widgets @ $2 each = $14, что переводится как «7 изделий по 2$ каждое = 14$» (. at = «по»). поскольку этот символ применялся в бизнесе, он был размещён на клавиатурах пишущих машинок и оттуда перекочевал в компьютер. в этот знак был неизвестен до появления компьютера. одна из версий происхождения названия «собака»: на алфавитно-цифровых мониторах персональных компьютеров серии двк (1980-е годы) «хвостик» рисуемого на экране изображения этого символа был коротким, что придавало ему сходство со схематически нарисованной собачкой. символ @ отображался при каждом включении компьютера двк, после чего пользователю необходимо было выбрать начальный загрузчик. по другой версии происхождение названия «собака» компьютерной игрой adventure, в которой игрока сопровождал пес, которого можно было посылать с разведывательными миссиями и который обозначался символом @. другие, ныне практически не используемые в языке, варианты именования этого знака: обезьяна, обезьянка, кракозябра, масямба, ухо, плюшка, подъюза (на некоторых клавиатурах ес эвм располагалась внизу на клавише «ю»).
1. первая правая цифра числа показывает число единиц, вторая - число двоек (1·2) , третья - число четверок (2·2), четвертая - число восьмерок (4·2) и т.д. имеем:
111101₂ = 1·1 + 2·0 + 4·1 + 8·1 + 16·1 + 32·1 = 1+4+8+16+32 = 61₁₀
2. число нужно поделить на два, найти остаток. полученный результат снова поделить на два и найти остаток и т.д. остатки, записанные в обратном порядке и есть запись в двоичном исчислении.
65÷2 = 32 (ост.1)
32÷2 = 16 (ост.0)
16÷2 = 8 (ост.0)
8÷2 = 4 (ост.0)
4÷2 = 2 (ост.0)
2÷2 = 1 (ост.0)
1÷2 = 0 (ост.1)
65₁₀ = 1000001₂
Поделитесь своими знаниями, ответьте на вопрос:
Выполните указанные арифмитические действия в заданных системах счисления: 126(8)+662(8)= 1101101(2)+11011(2)= 1102(2)*1101(2)=
(складываем с конца, как столбиком. 2+6 в десятичной системе =8, но в восьмеричной системе числа 8 нет, поэтому 2+6 будет равно 10. 0 пишем, 1 запоминаем. дальше складываем, опять 6+2 = 10 да 1 в уме = 11. 1 пишем, 1 запоминаем. 1+6 = 7 да 1 в уме, снова равно 10.)
(рассуждения теже, только 1+0 = 1, а вот 1+1 = 10)
(при умножении, 1*0 = 0, 1*1 = 1. но так как умножаем столбиком, то потом придется складывать, а при складывании учитываем, что 1+1 = 10, 10+1 = 11, 11+1 = 100)
проверьте, , правильность записи последнего уравнения. в двоичной системе не существует числа 2.