class Cluster{
vector<POINT> scores;
public:
int curX , curY;//координаты текущего центроида
int lastX, lastY;//координаты предыдущего центоида
size_t Size(){ return scores.size();}//получаем размер вектора
inline void Add(POINT pt){ scores.push_back(pt); }//Добавляем пиксель к кластеру
void SetCenter();
void Clear();//Чистим вектор
static Cluster* Bind(int k, Cluster * clusarr, vector<POINT>& vpt);
static void InitialCenter(int k, Cluster * clusarr , vector<POINT>& vpt);;
static void Start(int k, Cluster * clusarr, vector<POINT>& vpt);
inline POINT& at(unsigned i){ return scores.at(i);}//Доступ к элементам вектора
};
Теперь нам надо реализовать метод которой будет распределять начальные координаты центроидов. Можно конечно сделать чего-нибудь по сложнее, но в нашем случае сойдет и равномерное распределение по вектору:
void Cluster::InitialCenter(int k, Cluster * clusarr, vector<POINT>& vpt){
int size = vpt.size();
int step = size/k;
int steper = 0;
for(int i = 0;i < k;i++,steper+=step){
clusarr[i].curX = vpt[steper].x;
clusarr[i].curY = vpt[steper].y;
}
}
Также нужно написать метод, который будет ответственный за нахождение новых координат центроида в соответствии с пунктом 5.Координаты нового центроида можно найти описав вокруг пикселей кластера прямоугольник и тогда центроидом будет пересечение его диагоналей.
void Cluster::SetCenter(){
int sumX = 0, sumY = 0;
int i = 0;
int size = Size();
for(; i<size;sumX+=scores[i].x,i++);//the centers of mass by x
i = 0;
for(; i<size;sumY+=scores[i].y, i++);//the centers of mass by y
lastX = curX;
lastY = curY;
curX = sumX/size;
curY = sumY/size;
}
void Cluster::Clear(){
scores.clear();
}
И теперь только остался сделать простенький метод самого «привязывания» пикселей к определенному кластеру по принципу сравнения модулей отрезков:
Cluster * Cluster::Bind(int k, Cluster * clusarr, vector<POINT>& vpt){
for(int j = 0; j < k;j++)
clusarr[j].Clear();// Чистим кластер перед использованием
int size = vpt.size();
for(int i = 0; i < size; i++){// Запускаем цикл по всем пикселям множества
int min = sqrt(
pow((float)clusarr[0].curX-vpt[i].x,2)+pow((float)clusarr[0].curY-vpt[i].y,2)
);
Cluster * cl = &clusarr[0];
for(int j = 1; j < k; j++){
int tmp = sqrt(
pow((float)clusarr[j].curX-vpt[i].x,2)+pow((float)clusarr[j].curY-vpt[i].y,2)
);
if(min > tmp){ min = tmp; cl = &clusarr[j];}// Ищем близлежащий кластер
}
cl->Add(vpt[i]);// Добавляем в близ лежащий кластер текущий пиксель
}
return clusarr;
}
И наконец главный цикл:
void Cluster::Start(int k, Cluster * clusarr, vector<POINT>& vpt){
Cluster::InitialCenter(k,clusarr,vpt);
for(;;){//Запускаем основной цикл
int chk = 0;
Cluster::Bind(k,clusarr,vpt);//Связываем точки с кластерами
for(int j = 0; j < k;j++)//Высчитываем новые координаты центроидов
clusarr[j].SetCenter();
for(int p = 0; p<k;p++)//Проверяем не совпадают ли они с предыдущими цент-ми
if(clusarr[p].curX == clusarr[p].lastX && clusarr[p].curY == clusarr[p].lastY)
chk++;
if(chk == k) return;//Если да выходим с цикла
}
}
И что же из этого всего следует?
Вернемся к картинке с машинами, кластеризуя движущиеся объекты возникает проблема при использовании алгоритма к-средних, а именно мы не знаем сколько в данной сцене будет движущихся объектов, хотя можем приблизительно предугадать. Например кадр с машинами, на той сцене разумным будет предположить, что ну максимум там будет машин 10. Таким образом задавая на вход программе k = 10 и обведя точки 10 кластеров зелеными прямоугольниками, мы получим примерно следующую картину:
Теперь банально объеденив пересекающиеся прямоугольники, мы находим результирующие кластеры, обведя которые прямоугольником мы получим изображение преведенное в начале поста.Все просто.
Теги:
c++
кластерный анализ
к-средних
Хабы:
C++
Обработка изображений
Вроде оно
Объяснение:
#include "stdafx.h"
#include "stdio.h"
#include <time.h>
#include <stdlib.h>
class vector
{
private:
int* m;
int size;
public :
vector(int n = 0);
vector(const vector &vector2);
~vector();
};
vector::vector( int n )
{
if (n < 0) n = 0;
size = n;
m = new int[n];
if(!m)
printf("Error");
else
m = NULL;
}
vector::vector(const vector &vector2)
{
size = vector2.size;
m = new int [size];
for(int i = 0; i<size;i++)
m[i] = vector2.m[i];
printf("kopia stvorena !");
}
vector::~vector()
{
delete[] m;
}
vector(int *m, int size)
{
srand(time(NULL))
if(!m)
printf("error")
else
for(int i = 0; i < size; i++)
m[i] = rand()% 99;
}
int main()
{
vector v1(45),
system("pause");
return 0;
}
Поделитесь своими знаниями, ответьте на вопрос:
Составить программу вычисления среднего арифметического первых 50 чисел много
var i,s: integer;
begin
s:=0;
for i:=1 to 50 do s:=s+i;
writeln('s = ',s/50:4:1);
end.
Результат:
s = 25.5
Или так:
// Сумма первых n членов арифметической прогрессии S=(a1+an)/2*n
// Среднее арифметическое = S/n = (a1+an)/2
begin
writeln((1+50)/2:4:1);
end.