Предложение: делаем рекурсивный спуск по формуле cos(x)=2cos(x/2)^2 - 1, пока x > Pi sqrt(eps)/2, затем возвращаем 1-x^2/2. Оценка x < Pi sqrt(eps)/2 делалась для неравенства |1 - cos(x)| < eps, но возвращаем не просто 1, а 1-x^2/2 — до квадратичного члена, то есть с большей точностью. Кстати, Pi/2 < 2. Код JavaScript function cos1(x, eps) { if(Math.abs(x) < 2*Math.sqrt(eps)) return (1-x*x/2); var c = cos1(x/2, eps); return (2*c*c - 1); } cos(0.5, 0.001);
Внимательно посмотрев на эту реализацию, можно увидеть хвостовую рекурсию, которую можно представить в виде цикла, что предпочтительнее, потому что не требует памяти под стек вызовов и потому является быстрее. Но это выходит за пределы рассматриваемой задачи.
P.S. Оценка рядом Маклорена-Тейлора при малых аргументах предпочтительнее: сходится быстрее.
другой вариант Можно посчитать по ряду Тейлора, стандартно превратив итерацию в хвостовую рекурсию. Для этого используется вс функция, которой в качестве дополнительных (по сравнению с изначальной функцией) аргументов передаются все величины, которые хочется помнить (в данном случае номер члена i, очередной член a и вычисленную сумму s).
Код Haskell cos' eps x = helper 1 1 0 where helper i a s | abs a < eps = s | otherwise = helper (i + 2) newa (s + a) where newa = - a * x^2 / (i * (i + 1))
ряд Тейлора в данном случае удовлетворяет признаку Лейбница (ну, с оговорками), поэтому можно останавливаться, когда очередной член стал меньше эпсилона. Код JavaScript <script type="text/javascript"> function Cosine(x,eps) { function CosTaylor(x,n,an) { var an1 = (-1)*an*x*x/(2*n*(2*n-1)); if (Math.abs(an1) < eps) return an + an1; else { return an + CosTaylor(x,n+1,an1); } } return CosTaylor(x,1,1); } </script> <button onclick="alert( Cosine(0.75,0.001) )">Пример для x=0.75 и eps=0.001</button>
shugayzhanna6
22.05.2022
1. Первая теория, касающаяся ПО, была предложена английским математиком Аланом Тьюрингом в 1935 году. Он создал так называемую машину Тьюринга , математическую модуль абстрактной машины выполнять последовательности рудиментарных операций, которые переводят машину из одного фиксированного состояния в другое. Главная идея заключалась в математическом док-ве факта, что любое наперёд заданно состояние системы может быть всегда достигнуто последовательным выполнением конечного набора элементарных команд (программы) из фиксированного набора команд. 2. Программное обеспечение (ПО) - все или часть программ , процедур, правил и соответствующей документации системы обработки информации. 3. DOS (ДОС) - семейство операционных систем для ПК, ориентированных на использование дисковых накопителей (жёсткий диск, дискета). 4. На операционную систему перешли к концу 1960-х годов.
точное определение какого-нибудь понятия или закона