30 лет назад весь мир заворожённо наблюдал рождение блокбастеров века – «Терминатор», «Звёздные войны», «Робокоп». Советские дети просто зачитывались повестями Кира Булычёва, а любимыми фильмами были «Гостья и будущего» и «Лиловый шар». Волна научной фантастики и роботомании захватила умы советской молодёжи. И посей день, роботы вызывают самый неподдельный интерес у молодого поколения.
На самом деле, история робототехники уходит своими корнями в глубокую древность. Аж за 350 лет до нашей эры был создан первый в истории механический голубь. Его создатель – древнегреческий математик Архит – заложил прочный фундамент для дальнейшего развития механики.
Вообщем, робототехника нам нужна, в наше время роботы нужны, то чего не можем сделать мы , сделают они - роботы.
Ребят почитайте до конца, в конце норм вообще!!! В конце , последнее предложение классное.Поделитесь своими знаниями, ответьте на вопрос:
(Работа на эмуляторе emu8086) Я нашел интересную задачку, которую не могу решить написать программу. Имеются два массива 8-ми битных целых чисел со знаком. Сформировать массив частных от целочисленного деления соответствующих элементов этих массивов. Показать все три массива.
Искать будем с двух указателей. Рассмотрим кусок массива, в котором ищем ответ A[l..r] (первоначально l = 1, r = n). Посмотрим на A[l] + A[r]. Если эта сумма больше, чем нужно, уменьшим на 1 число r, если меньше - увеличим на 1 число l, если равно -A[k] - победа, выводим ответ (l, r, k). Будем повторять это в цикле, пока l не станет больше r.
Если после выполнения цикла по k искомая тройка так и не нашлась, пишем "нет".
Корректность. Пусть в какой-то момент A[l] + A[r] < -A[k]. Тогда, чтобы иметь возможность получить A[i] + A[j] = -A[k], надо сумму увеличить. A[l] оказалось настолько мало, что даже если прибавить к нему самое большое возможное число (а это как раз A[r] - массив-то отсортирован!), то всё равно получается слишком мало. Значит, A[l] в ответе не будет, и можно безбоязненно выкинуть его из рассмотрения. Аналогично будет и в случае, когда A[l] + A[r] > -A[k].
Осталось показать, что если такая тройка индексов существует, то наш алгоритм не выдаст неверный ответ "нет". Но это очевидно: если ответ (I, J, K), то уж при k = K алгоритм что-нибудь да найдёт.
Время работы. Внутренний цикл выдает ответ не более чем за линейное время: всякий раз размер массива уменьшается на 1, всего элементов в массиве n, а на каждом шаге тратится константное время; пусть время выполнения внутреннего цикла T'(n) < an. Тогда все n проходов внешнего цикла затратят время T1(n) <= n T'(n) < an^2.
Сортировку можно сделать за время T2(n) < b nlogn < bn^2
Общее время работы T(n) = T1(n) + T2(n) < an^2 + bn^2 = cn^2