Если в записи числа присутствует цифра 8, то её основание не может быть меньше 9. В девятиричной системе двух разрядов достаточно для представления числа 88(9)=9х8+8=80(10), поэтому в системе с любым рассматриваемым нами основанием число 32 будет двухзначным. Запишем 32 в расширенной форме в системе счисления по основанию n: 32(10)=a x n + b. По условию запись числа оканчивается цифрой 8, т.е. b=8. Тогда an+8=32 или an=24. Остается решить полученное уравнение в целых числах относительно минимального n≥9: n=24/a Разложим 24 на множители: 24 = 2 х 2 х 2 х 3, ⇒ а ∈ (2, 3, 4, 6, 8, 12, 24) a=2 ⇒ n=12 a=3 ⇒ n=8, что уже меньше 9 и большие значения a можно не рассматривать. Полагая а=2 и n=12 получаем запись 28 в двенадцатиричной системе. Проверка: 28(12)=2х12+8=24+8=32(10). ответ: 12
ocik1632933
09.01.2020
1. Первый интервал 21-30, в него входят 10 чисел (21,22,23,24,25,26,27,28,29,30) = а вероятность будет равна количеству чисел этого интервала к общему интервалу [1;100]. Таким образом для первого интервала 10/100 = 10% = 0,1. 2.Идем по аналогии с предыдущим интервалом : [31;55] - это 25 чисел,следовательно 25/100=25% = 0,25. 3.Интервал [25;100] - это 75 чисел. 75/100=75%=0,75. 4. Ровно 25, это единственное число,а как вы уже успели заметить - каждое число является 1 процентом. Таким образом можно сразу сказать что вероятность для этого случая 1% или 0,01.
Запишем 32 в расширенной форме в системе счисления по основанию n:
32(10)=a x n + b.
По условию запись числа оканчивается цифрой 8, т.е. b=8.
Тогда an+8=32 или an=24.
Остается решить полученное уравнение в целых числах относительно минимального n≥9: n=24/a
Разложим 24 на множители: 24 = 2 х 2 х 2 х 3, ⇒ а ∈ (2, 3, 4, 6, 8, 12, 24)
a=2 ⇒ n=12
a=3 ⇒ n=8, что уже меньше 9 и большие значения a можно не рассматривать.
Полагая а=2 и n=12 получаем запись 28 в двенадцатиричной системе.
Проверка: 28(12)=2х12+8=24+8=32(10).
ответ: 12