Таких систем исчисления всего две. Основание а = 9 и основание а =367, но в системе с основанием 367 проблематично записывать числа (символов не хватит). Если число 3306(10) в системе исчисления с основанием а заканчивается цифрой 3, то тогда число 3303 делится на основание системы а. Отсюда алгоритм поиска. Находим все делители числа 3303. 3303 = 3*1101 = 3*3*367. Число 367 - простое. Поэтому основаниями системы исчисления могут быть только 3, 9, 367. Основание =3 не подходит, так как по условию число должно заканчиваться на 3 -> основание больше 3. Остаются 9, 367.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан целочисленный двумерный массив, размерности n×m. Найти сумму и произведение элементов, кратных 3 и 5. Задание нужно сделать на Python'е.
Если число 3306(10) в системе исчисления с основанием а заканчивается цифрой 3, то тогда
число 3303 делится на основание системы а.
Отсюда алгоритм поиска. Находим все делители числа 3303.
3303 = 3*1101 = 3*3*367. Число 367 - простое. Поэтому основаниями системы исчисления
могут быть только 3, 9, 367. Основание =3 не подходит, так как по условию число должно заканчиваться на 3 -> основание больше 3. Остаются 9, 367.