Карбон (лат. Carboneum, C) — хімічний елемент IV групи періодичної системи Менделєєва. Відомі два стабільні ізотопи І2С (98,892 %) іІЗС (1,108 %).
Вуглець відомий із глибокої давнини. Деревне вугілля служило для відновлення металів із руд, алмаз — як дорогоцінний камінь. Значно пізніше почав застосовуватися графіт для виготовлення тиглів та олівців.
У 1778 p. K. Шеєле, нагріваючи графіт із селітрою, виявив, що при цьому, як і при нагріванні вугілля із селітрою, виділяється вуглекислий газ. Хімічний склад алмаза був встановлений у результаті дослідів А. Лавуазьє (1772) із вивчення горіння алмаза на повітрі й у результаті досліджень С. Теннанта (1797), який довів, що однакові кількості алмаза й вугілля дають при окисненні рівні кількості вуглекислого газу. Карбон як хімічний елемент був визнаний тільки в 1789 р. А. Лавуазьє. Латинську назву carboneim Карбон отримав від carbo — вугілля.
Середній вміст Карбону в земній корі складає 2,3 • 10-2 % за масою. Карбон накопичується у верхній частині земної кори (біосфері): у живій речовині 18 % Карбону, у деревині — 50 %, у кам'яному вугіллі — 80 %, у нафті — 85 % в антрациті — 96 %. Значна частина Карбону літосфери зосереджена у вапняках і доломітах.
Число власних мінералів Карбону — 112, винятково велике число органічних сполук Карбону — вуглеводні й їхні похідні.
З накопиченням Карбону в земній корі пов'язані нагромадження і багатьох інших елементів, що сорбуються органічною речовиною й осаджуються у вигляді нерозчинних карбонатів і т. ін.
У порівнянні із середнім умістом Карбону в земній корі, людство у винятково великих кількостях видобуває Карбон із надр (вугілля, нафта, природний газ), тому що ці копалини — основні сучасні джерела енергії.
Карбон широко розповсюджений також у космосі; на Сонці він займає четверте місце після Гідрогену, Гелію й Кисню.
ФІЗИЧНІ Й ХІМІЧНІ ВЛАСТИВОСТІ
Відомі чотири кристалічні модифікації вуглецю: графіт, алмаз, карбін і лонсдейліт.
Графіт — сіро-чорна, непрозора, жирна на дотик, дуже м'яка маса з металевим блиском.
Алмаз — дуже тверда кристалічна речовина. Кристали мають кубічну гра-нецентровану решітку (А = 3,560Е). Помітне перетворення алмаза на графіт гається при температурах понад 1 400 °С у вакуумі або в інертній атмосфері. При атмосферному тиску й температурі близько 3 700 °С графіт випаровується.
Рідкий вуглець можна отримати при тиску вищому за 103 МПа, і температурах вищих за 3 700 °С. Для твердого вуглецю (кокс, сажа, деревне вугілля) характерним є також стан із неупорядкованою структурою — «аморфний» вуглець, який не являє собою самостійної модифікації; в основі його будови лежить структура дрібнокристалічного графіту. Нагрівання деяких різновидів «аморфного» вуглецю вище за 1 500—1 600 °С без доступу повітря викликає їхнє перетворення на графіт. Фізичні властивості «аморфного» вуглецю дуже сильно залежать від дисперсності частинок і наявності домішок. Густина, теплоємність, теплопровідність і електропровідність «аморфного» вуглецю завжди вища, ніж графіту.
Лонсдейліт знайдений у метеоритах і отриманий штучно; його структура й властивості остаточно не встановлені.
Електронна конфігурація зовнішньої оболонки атому Карбону 2s22p2
Для Карбону характерним є утворення чотирьох ковалентних зв'язків, обумовлене збудженням зовнішньої оболонки до стану 2s'2p3:
Тому Карбон здатний однаковою мірою як притягати, так і віддавати електрони. Хімічний зв'язок може здійснюватися за рахунок утворення sp3-, sp2- і sp-гібридних орбіталей, яким відповідають координаційні числа 4, 3 і 2. Кількість валентних електронів Карбону й кількість валентних орбіталей однакові — це одна з причин стійкості зв'язку між атомами Карбону.
Білкові молекули класифікують за їхньою формою, хімічним складом і властивостями.
За формою молекули розрізняють два типи білків: фібрилярні та глобулярні. У фібрилярних білків поліпептидні ланцюги просторово розташовані уздовж однієї осі, внаслідок чого вони набувають шаруватої чи волокнистої будови. Більшість фібрилярних білків нерозчинні у воді, тому пов'язані зі структурною чи моторною функціями. У глобулярних білків поліпептидні ланцюги розташовані у різних площинах, внаслідок складення (скручування) молекули в глобулу. Такі білки, як правило, розчинні у воді і виконують сигнальну, регуляторну, каталітичну, захисну функції.
За хімічним складом розрізняють прості та складні білки. Прості білки містять тільки амінокислоти, зв'язані в ланцюжки. На відміну від них складні білки мають також неамінокислотний компонент — простетичну групу. За типом простетичної групи складні білки поділяють на глікопротеїни (з вуглеводним залишком), ліпопротеїни (включають ліпіди), хромопротеїни (містять пігмент), нуклеопротеїни (сполучені з нуклеїновими кислотами), фосфопротеїни (містять фосфатні групи), металопротеїни (містять іони металів), флавопротеїни (включають флавіни) тощо. Деякі простетичні групи служать кофакторами, необхідними для роботи ферментів. Інші, такі як полісахаридні ланцюжки, допомагають білку приймати потрібну конформацію і надають додаткову стабільність. Прикладами органічних простетичних груп в складі білків служать гем (в складі гемоглобіну), тіамін, біотин та інші. Неорганічні простетичні групи найчастіше складаються з іонів металів, найпоширенішими з яких є цинк, магній і молібден
Прості білки за здатністю розчинятися поділяють на такі групи: гістони — розчинні лише у воді; альбуміни — розчинні у воді та сольових розчинах; глобуліни — розчинні тільки у слабких сольових розчинах; склеропротеїни — не розчинні у воді, кислотах, лугах, сольових розчинах
Поделитесь своими знаниями, ответьте на вопрос:
Остальные реакции не являются окислительно-восстановительными, так как проходят без изменения степеней окисления