Простые вещества: молекулы состоят из атомов одного вида (атомов одного элемента).
Пример: H2, O2,Cl2, P4, Na, Cu, Au.
Сложные вещества (или химические соединения): молекулы состоят из атомов разного вида (атомов различных химических элементов).
Пример: H2O, NH3, OF2, H2SO4, MgCl2, K2SO4.
Аллотропия одного химического элемента образовывать несколько простых веществ, различающихся по строению и свойствам.
Пример:
С - алмаз, графит, карбин, фуллерен.
O - кислород, озон.
S - ромбическая, моноклинная, пластическая.
P - белый, красный, чёрный.
Явление аллотропии вызывается двумя причинами:
Различным числом атомов в молекуле, например кислород O2 и озон O3.
Образованием различных кристаллических форм, например алмаз, графит, карбин и фуллерен (смотри рисунок выше).
Основные классы неорганических веществ
Бинарные соединения
Вещества, состоящие из двух химических элементов называются бинарными (от лат. би – два) или двухэлементными.
Названия бинарных соединений образуют из двух слов – названий входящих в их состав химических элементов.
Первое слово обозначает электроотрицательную часть соединения – неметалл, его латинское название с суффиксом –ид стоит всегда в именительном падеже.
Второе слово обозначает электроположительную часть – металл или менее электроотрицательный элемент, его название стоит в родительном падеже, затем указывается степень окисления (только в том случае, если она переменная):
Запомни!
BH3 — боран
B2H6 — диборан
CH4 — метан
SiH4 — силан
NH3 — аммиак
PH3 — фосфин
AsH3 — арсин
Оксиды
Оксиды — сложные вещества, состоящие из двух химических элементов, один из которых кислород в степени окисления -2.
Общая формула оксидов: ЭхОу
Основные оксиды
Основные оксиды — оксиды, которым соответствуют основания.
Основные оксиды образованы металлом со степенью окисления +1, +2.
Пример
Соответствие основных оксидов и оснований
Na2O — Na2(+1)O(-2) — NaOH
MgO — Mg(+2)O(-2) — Mg(OH)2
FeO — Fe(+2)O(-2) — Fe(OH)2
MnO — Mn(+2)O(-2) — Mn(OH)2
Амфотерные оксиды
Амфотерные оксиды — оксиды, которые в зависимости от условий проявляют либо основные, либо кислотные свойства.
Амфотерные оксиды образованы металлом со степенью окисления +3, +4, а также некоторыми металлами (Zn, Be) со степенью окисления +2.
Пример
Al2(+3)O3(-2), Fe2(+3)O3(-2), Mn(+4)O2(-2), Zn(+2)O(-2), Be(+2)O(-2)
Кислотные оксиды
Кислотные оксиды — оксиды, которым соответствуют кислоты.
Кислотные оксиды образованы неметаллом, а также металлом со степенью окисления +5, +6, +7.
Пример
Соответствие кислотных оксидов и кислот
SO3 — S(+6)O3(-2) — H2SO4
N2O5 — N2(+5)O5(-2) — HNO3
CrO3 — Cr(+6)O3(-2) — H2CrO4
Mn2O7 — Mn2(+7)O7(-2) — HMnO4
Гидроксиды
Гидроксиды — сложные вещества, состоящие из трех элементов, два из которых водород со степенью окисления +1 и кислород со степенью окисления -2.
Общая формула гидроксидов: ЭхОуНz
Основания
Основания — сложные вещества, состоящие из ионов металла и одной или нескольких гидроксо-групп (ОН-).
В основаниях металл имеет степень окисления +1, +2 или вместо металла стоит ион аммония NH4+
Пример
NaOH, NH4OH, Ca(OH)2
Амфотерные гидроксиды
Амфотерные гидроксиды — сложные вещества, которые в зависимости от условий проявляют свойства оснований или кислот.
Амфотерные гидроксиды имеют металл со степенью окисления +3, +4, а также некоторые металлы (Zn, Be) со степенью окисления +2.
Пример
Zn(OH)2, Be(OH)2, Al(OH)3, Cr(OH)3
Кислоты
Кислоты — сложные вещества, состоящие из атомов водорода и кислотных остатков.
В состав кислот входит неметалл или металл со степенью окисления +5, +6, +7.
Пример
H2SO4, HNO3, H2Cr2O7, HMnO4
Соли
Соли- соединения, состоящие из катионов металлов (или NH4+) и кислотных остатков.
Общая формула солей: MexAcy
Me - металл
Ac - кислотный остаток
Пример
KNO3 — нитрат калия
(NH4)2SO4 — сульфат аммония
Mg(NO3)2 — нитрат магния
Названия кислот и кислотных остатков
Кислота Кислотный остаток
Название Формула Название Формула
Соляная
(хлороводородная) HCl Хлорид Cl(-)
Плавиковая
(фтороводородная) HF Фторид F(-)
Бромоводородная HBr Бромид Br(-)
Иодоводородная HI Иодид I(-)
Азотистая HNO2 Нитрит NO2(-)
Азотная HNO3 Нитрат NO3(-)
Сероводородная H2S Сульфид
Гидросульфид S(2-)
HS(-)
Сернистая H2SO3 Сульфит
Гидросульфит SO3(2-)
HSO3(-)
Серная H2SO4 Сульфат
Гидросульфат SO4(2-)
HSO4(-)
Угольная H2CO3 Карбонат
Гидрокарбонат СО3(2-)
НСО3(-)
Кремниевая H2SiO3 Силикат SiO3(2-)
Ортофосфорная H3PO4 Ортофосфат
Гидроортофосфат
Дигидроортофосфат РО4(3-)
НРО4(2-)
Н2РО4(-)
Муравьиная НСООН Формиат НСОО(-)
Уксусная СН3СООН Ацетат СН3СОО(-)
Объяснение: если что это с сайта так как я не помню ссори(
ПРИМЕРЫ ВЫПОЛНЕНИЯ ЗАДАНИЙ
Пример 1. Напишите схемы диссоциации: 1) кислот HNO3 и H2SO4,
2) щелочей KOH и Ba(OH)2, 3) нормальных (средних) солей K2SO4 и
CaCl2, 4) кислой соли NaHCO3 и основной соли ZnOHCl.
Решение. 1) Одноосновные кислоты диссоциируют в одну ступень,
двухосновные – в две, трёхосновные – в три и т.д., поэтому:
HNO3 = H+ + NO3–; H2SO4 = H+ + HSO − ; HSO −
4 4 H+ + SO 2− .
4
2) Аналогично диссоциируют основания:
KOH = K+ + OH–; Ba(OH)2 = BaOH+ + OH–; BaOH+ Ba2+ + OH–.
3) Нормальные соли диссоциируют в одну ступень независимо от
состава, поэтому:
K2SO4 = 2K+ + SO 2- ; CaCl2 = Ca2+ + 2Cl–.
4
4) Кислые и основные соли диссоциируют ступенчато:
NaHCO3 = Na+ + HCO 3 ; HCO 3
− −
H+ + CO 3 − .
2
ZnOHCl = ZnOH+ + Cl–; ZnOH+ Zn2+ + OH–.
Пример 2. Определите количественные характеристики (изотони-
ческий коэффициент, степень диссоциации, константу диссоциации)
электролитической диссоциации уксусной кислоты в растворе, содер-
жащем 0,571 г кислоты в 100 г воды, если этот раствор кристаллизуется
при температуре –0,181 °С.
Решение. 1) Учитывая, что молярная масса уксусной кислоты
CH3COOH равна 60 г/моль, вычисляем моляльность раствора:
0,571 ⋅1000
Сm = = 0,095 моль/кг.
100 ⋅ 60
2) Находим понижение температуры кристаллизации раствора:
ΔТк = Кк Сm = 1,86·0,095 = 0,1767 °.
3) Вычисляем изотонический коэффициент:
0 , 181
i= = 1,0243.
0 , 1767
4) Исходя из того, что каждая молекула данной кислоты диссоции-
рует на два иона (CH3COOH = H+ + CH3COO–), вычисляем степень элек-
тролитической диссоциации:
131
i − 1 1,0243 − 1
α= = = 0,0243 = 2,43 %.
n −1 2 −1
5) Ввиду того, что раствор разбавлен, молярную концентрацию
принимаем равной моляльности и находим константу диссоциации:
К = α2·СМ = (0,0243)2·0,095 = 5,6·10–5.
Пример 3. При растворении 3,48 г нитрата кальция в 200 г воды
получен раствор, кристаллизующийся при температуре –0,491 °С. Оп-
ределите кажущуюся степень электролитической диссоциации Ca(NO3)2.
Решение. 1) Молярная масса нитрата кальция равна 174 г/моль. Вы-
числяем моляльность раствора:
3,48 ⋅ 1000
Cm = = 0,1 моль/кг.
200 ⋅ 174
2) Находим теоретическое понижение температуры кристаллизации
раствора:
ΔТк = К(H2O) Cm = 1,85·0,1 = 0,185 °.
3) Вычисляем изотонический коэффициент:
Δ Т к, эк сп
0, 491
i= = = 2, 64 .
ΔТ к 0 ,1 8 5
4) Определяем кажущуюся степень диссоциации Ca(NO3)2:
i − 1 2, 64 − 1 1, 64
αкаж = = = = 0, 82, или 82 %.
n −1 3 −1 2
Пример 4. В 250 г воды растворено 0,375 г сульфата магния. Рас-
считайте ионную силу раствора, определите коэффициенты активности
ионов и активность раствора.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите массы соли и воды, необходимые для приготовления 450г. раствора с массовой долей соли 20%
Дано:
m(p-pa) = 450 г.
ω(соль) = 20%
Найти:
m(соли) - ?
m(воды) - ?
450 г.
соль + Н₂О = р-р
m(соли в р-ре) = 450 * 0,2 = 90 г.
m(воды) = 450 - 90 = 360 г.
ответ: m(H₂O)=360г; m(соли)=90г.