привет ты не предлагаешь мне скинуть скриншот с сайта и его не было у всех скидывает и ты не предлагаешь мне скинуть скриншот с сайта и его не было у всех есть гнилые зубы но извините за не прямо сейчас писать там чтобы мы точно не знаю Я обожаю сладкое хотите получать эти Эл не прямо сейчас писать там чтобы мы точно не знаю Я обожаю тебя хотябы на чуть-чуть и ты не предлагаешь мне скинуть скриншот с сайта и его не было у всех есть гнилые зубы но извините за в Инстаграме она не может быть будем добавлять ли нечего кроме этого в Инстаграме не знаю но я нн
Поделитесь своими знаниями, ответьте на вопрос:
Как происходит коррозия цинка, находящегося в контакте со свинцом в нейтральной и кислотой среде? составьте электронные уравнения анодного и катодного процессов. каков состав продуктов коррозии. напишите уравнение нериста.
В классической теории химического строения молекула рассматривается как наименьшая стабильная частица вещества, обладающая всеми его химическими свойствами. В этом определении к молекулам относятся и одноатомные частицы (в частности, молекулы инертных газов)
Молекула данного вещества имеет постоянный состав, то есть одинаковое количество атомов, объединённых химическими связями, при этом химическая индивидуальность молекулы определяется именно совокупностью и конфигурацией химических связей, то есть валентными взаимодействиями между входящими в её состав атомами, обеспечивающими её стабильность и основные свойства в достаточно широком диапазоне внешних условий. Невалентные взаимодействия (например, водородные связи), которые зачастую могут существенно влиять на свойства молекул и вещества, образуемого ими, в качестве критерия индивидуальности молекулы не учитываются.
Центральным положением классической теории является положение о химической связи, при этом допускается наличие не только двухцентровых связей, объединяющих пары атомов, но и наличие многоцентровых (обычно трёхцентровых, иногда — четырёхцентровых) связей с «мостиковыми» атомами — как, например, мостиковых атомов водорода в боранах, природа химической связи в классической теории не рассматривается — учитываются лишь такие интегральные характеристики, как валентные углы, диэдральные углы (углы между плоскостями, образованными тройками ядер), длины связей и их энергии.
Таким образом, молекула в классической теории представляется динамической системой, в которой атомы рассматриваются как материальные точки и в которой атомы и связанные группы атомов могут совершать механические вращательные и колебательные движения относительно некоторой равновесной ядерной конфигурации, соответствующей минимуму энергии молекулы и рассматривается как система гармонических осцилляторов.
Молекула состоит из атомов, а если точнее, то из атомных ядер, окружённых определённым числом внутренних электронов, и внешних валентных электронов, образующих химические связи. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул вещества не зависят от его получения.
Атомы объединяются в молекуле в большинстве случаев с химических связей. Как правило, такая связь образуется одной, двумя или тремя парами электронов, находящихся в совместном владении двух атомов, образуя общее электронное облако, форма которого описывается типом гибридизации. Молекула может иметь положительно и отрицательно заряженные атомы (ионы).
Состав молекулы передаётся химическими формулами. Эмпирическая формула устанавливается на основе атомного соотношения элементов вещества и молекулярной массы.
Геометрическая структура молекулы определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю. Если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи), при дальнейшем сближении начинают действовать электростатические силы отталкивания атомных ядер. Препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек.
Каждому атому в определённом валентном состоянии в молекуле можно приписать определённый атомный, или ковалентный радиус (в случае ионной связи — ионный радиус), который характеризует размеры электронной оболочки атома (иона) образующего химическую связь в молекуле. Размер электронной оболочки молекулы, является условной величиной. Существует вероятность (хотя и очень малая) найти электроны молекулы и на большем расстоянии от её атомного ядра. Практические размеры молекулы определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке молекул в молекулярном кристалле и в жидкости. На бо́льших расстояниях молекулы притягиваются друг к другу, на меньших — отталкиваются. Размеры молекулы можно найти с рентгеноструктурного анализа молекулярных кристаллов. Порядок величины этих размеров может быть определён из коэффициентов диффузии, теплопроводности и вязкости газов и с плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы одного и того же или разных молекул, может быть охарактеризована средними значениями так называемых ван-дер-ваальсовых радиусов.
Радиус Ван-дер-Ваальса существенно превышает ковалентный. Зная величины ван-дер-ваальсовых, ковалентных и ионных радиусов, можно построить наглядные модели молекул, которые бы отражали форму и размеры их электронных оболочек.
Объяснение: