Проведите реакцию нетрализации между растворами кислоты и щёлочи (к щёлочи предварительно добавьте фенолфталиин) А) HCl и NaOH Б) H2 So4 и NaOHВ) HNo3 и Ca(OH)2Г) HCl и Ca(OH)2
(допускается также описание этого процесса в виде:
Zn + H2SO4 ZnSO4 + 2H
0
(в данном случае – не Н2),
K2Cr2O7 + 6H
0
+ 4H2SO4 K2SO4 + 7H2O + Cr2(SO4)3).
Если проводить восстановление дихромат-иона молекулярным водородом Н2
(например, из ) смены оранжевой окраски раствора наблюдаться не будет,
поскольку молекулярный водород обладает заметно меньшей восстановительной
активностью, чем «водород в момент выделения» (Zn + H2SO4 р-р).
Опыт 7.
Гидроксид меди(II) – термически нестабильный гидроксид, который уже при
60-70 С разлагается. В случае использования горячего раствора щелочи образуется CuO,
а не Cu(OH)2:
CuSO4 + 2NaOH Cu(OH)2 + Na2SO4,
(образуется голубовато-синий осадок)
CuSO4 + 2NaOH
t
CuO + H2O + Na2SO4.
morozov1605
29.05.2022
Осн. методы синтеза терефталевой кислоты: 1) жидкофазное окисление n-ксилола в СН3СООН (175-230 °С, 1,5-3,0 МПа, кат.-со-ли Со и Мh) в течение 0,5-3 ч; выход 95%, содержание осн. в-ва 99,5%. Техн. продукт от примеси 4-формилбензойной к-ты очищают гидрированием при высокой т-ре и давлении в присут. Pd/C или Pt/C с послед. отделением получающейся n-толуиловой к-ты кристаллизацией. Получаемую этим чистую терефталевую кислоту наз. волокнообразующей. 2) Окисление n-цимола разб. H2SO4 в СН3СООН в присут. Сr2О3. 3) Окисление нафталина во фталевый ангидрид с послед. превращением его в дикалиевую соль о-фталевой кислоты и изомеризацией при 350-450 °С и давлении СО2 1-5 МПа в дикалиевую соль терефталевой кислоты с последующим ее подкислением разб. H2SO4.
afilippov3321
29.05.2022
Закон Авогадро. В равных объемах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул.Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объем.Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.
Закон Авогадро очень хорошо подтверждается на примерах одноатомных газов (близких к идеальным). Руководствуясь этим законом, измеряют относительную плотность, а вместе с ней и молярные массы газов. Также при повышении температуры, объем газа увеличивается, но количество его остается неизменным, что тоже подтверждает закон Авогадро. Молярный объем для разных условий всегда можно пересчитать по формуле Менделеева-Клапейрона. На практике для реальных газов в ответственных расчетах используют уравнение Ван-дер-Ваальса (P+N^2*a/V^2)(V-nb)=nRT Поправка a/V^2 учитывает взаимодействие между молекулами реального газа, а поправка b - это поправка к объему газа.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Проведите реакцию нетрализации между растворами кислоты и щёлочи (к щёлочи предварительно добавьте фенолфталиин) А) HCl и NaOH Б) H2 So4 и NaOHВ) HNo3 и Ca(OH)2Г) HCl и Ca(OH)2
Проведите реакцию нетрализации между растворами кислоты и щёлочи (к щёлочи предварительно добавьте фенолфталиин)
А) HCl и NaOH
Б) H2 So4 и NaOH
В) HNo3 и Ca(OH)2
Г) HCl и Ca(OH)24
с растворами MnSO4 и Al2(SO4)3 выпадут осадки, причѐм в пробирке, содержащей
раствор MnSO4 , выпавший осадок будет медленно буреть на воздухе, а в пробирке,
содержащей Al2(SO4)3 , осадок будет растворяться в избытке реактива.
MnSO4 +2NaOH = Mn(OH)2↓ + Na2SO4
2 Mn(OH)2 + O2 = 2MnO(OH)2 (или 2H2MnO3 или MnO2 + H2O)
Al2(SO4)3 + 6NaOH = 2Al(OH)3↓ + 3Na2SO4
Al(OH)3 + NaOH = Na[Al(OH)4] (или Na3[Al(OH)6])
Мы определили MnSO4 и Al2(SO4)3.
Реактивы и оборудование на одного участника.
Растворы : 0,5М Ba(OH)2, 1М NaOH (свежеприготовленный, так как примесь
карбоната будет давать ложную реакцию с BaCl2), 1М H2SO4, 1М HCl, 0,5М Na2SO4, 0,5М
Pb(CH3COO)2, 0,5М BaCl2, 0,5М NH4Cl, 0,5М MnSO4, 0,5М Al2(SO4)3, 0,5М Na2CO3 : CaCl2, CuCl2, NaCl, для
соединений меди. Поэтому приходим к выводу, что мы должны синтезировать CuCl2 или
CuSO4. При этом CuCl2 не позволит различить BaCl2 и Ca(NO3)2, а CuSO4 – позволит.
Окончательный вывод – мы должны синтезировать CuSO4.
Синтез реактива.
Сульфат меди (II) может быть получен путем взаимодействия двух из выданных
вещества – основного карбоната меди и серной кислоты – по реакции:
Cu2(OH)2CO3 + 2H2SO4 → 2CuSO4 + CO2↑ + 3H2O
Для этого добавим к раствору серной кислоты избыток основного карбоната меди.
Наблюдаем выделение газа и растворение основного карбоната меди с образованием
голубого раствора сульфата меди. После прекращения выделения газа сольем раствор с
осадка.
Идентификация соединений.
Идентификацию соединений можно проводить в произвольном порядке. Для ее
всплывает)
4 Выпадение черного
осадка
CuSO4 + Na2S → CuS↓ +
Na2SO4
Na2S
5 При недостатке
реактива –
образование
бесцветного
раствора, при
избытке –
зеленого*
a) 2CuSO4 (недост.) +
6Na2S2O3 → 2Na3[Cu(S2O3)2]
(бесцветный)+ Na2S4O6 +
2Na2SO4**
б) CuSO4 (изб.) + 2Na2S2O3
→ Na2[Cu(S2O3)2] (зеленый)+
Na2SO4
Na2S2O3
6 Интенсивное
зеленое
окрашивание
раствора
CuSO4 + 6NaNO2 →
Na4[Cu(NO2)6] + Na2SO4
NaNO2
7 Выпадение
обильного белого
осадка
CuSO4 + BaCl2 → BaSO4↓ +
CuCl2
BaCl2
8 Замедленное (через
10 – 15 мин)
выпадение
кристаллического
осадка
CuSO4 + Ca(NO3)2 → CaSO4↓
+ Cu(NO3)2
Ca(NO3)2
9 При недостатке
реактива –
интенсивное
васильковое
окрашивание, при
избытке –
выпадение
голубого осадка*
a) CuSO4 (недост.) + 4NH3 →
[Cu(NH3)4]SO4
б) CuSO4 (изб.) + 2NH3 +
2H2O → Cu(OH)2↓ +
(NH4)2SO4
NH3
10 Появление
василькового
окрашивания и
выпадение белого
осадка
CuSO4 + 2[Zn(NH3)4]SO4 +
4H2O → [Cu(NH3)4]SO4 +
2Zn(OH)2↓
В пронумерованные пробирки помещают 5 % растворы KI, NaOH, NaHCO3, Na2S,
Na2S2O3, NaNO2, BaCl2, NH3, [Zn(NH3)4]SO4 (методику получения см. в разделе
методические указания) и 20 % раствор Ca(NO3)2. По 5 мл каждого раствора на человека.
Также в подписанных бюксах выдаются твердые вещества CaCO3, Cu2(OH)2CO3
(при отсутствии в наличии см. методику получения в разделе методические указаСоль Мора – (NH4)2Fe(SO4)2 6H2O.
а) При нагревании (при ~100 С) твердой
(NH4)2Fe(SO4)2 6H2O С
100
(NH4)2Fe(SO4)2 + 6H2O.
б) При взаимодействии соли Мора с раствором щелочи при небольшом
нагревании по появлению
(NH4)2Fe(SO4)2 6H2O + 4NaOH
t
2NH3 + Fe(OH)2 + 2Na2SO4 + 8H2O,
4Fe(OH)2 + O2 + 2H2O 4Fe(OH)3
(вместо образования Fe(OH)3 в качестве верного ответа принимается образование
FeO(OH)).
в) Обнаружить присутствие сульфат-ионов в растворе соли Мора можно с
реакции образования нерастворимого белого осадка BaSO4:
Ba2+ + SO4
2 BaSO4.
Опыт 2.
2NaNO2 + H2SO4 Na2SO4 + NO2 + NO + H2O,
(наблюдается выделение бурого газа)
Na2S2O3 + H2SO4 Na2SO4 +
CaCO3 + 2CH3COOH (CH3COO)2Ca + CO2 + H2O,
CaCO3 + H2SO4 CaSO4 + CO2 + H2O.
О
взаимодействию H2SO4 и CaCO3.
Опыт 4.
При взаимодействии цинка с серной кислотой выделяется водород:
Zn + H2SO4
RT
EA
k k e
0
). является
анодом, а медь – катодом:
Анод Катод
Zn / H2SO4 р-р / Cu
Zn0
2ē Zn2+ 2Н+
+ 2ē Н2
Cr3+
:
K2Cr2O7 + 3Zn + 7H2SO4 K2SO4 + 3ZnSO4 + 7H2O + Cr2(SO4)3
(допускается также описание этого процесса в виде:
Zn + H2SO4 ZnSO4 + 2H
0
(в данном случае – не Н2),
K2Cr2O7 + 6H
0
+ 4H2SO4 K2SO4 + 7H2O + Cr2(SO4)3).
Если проводить восстановление дихромат-иона молекулярным водородом Н2
(например, из ) смены оранжевой окраски раствора наблюдаться не будет,
поскольку молекулярный водород обладает заметно меньшей восстановительной
активностью, чем «водород в момент выделения» (Zn + H2SO4 р-р).
Опыт 7.
Гидроксид меди(II) – термически нестабильный гидроксид, который уже при
60-70 С разлагается. В случае использования горячего раствора щелочи образуется CuO,
а не Cu(OH)2:
CuSO4 + 2NaOH Cu(OH)2 + Na2SO4,
(образуется голубовато-синий осадок)
CuSO4 + 2NaOH
t
CuO + H2O + Na2SO4.