спирты - орг. в-ва, содержащие гидроксу группу -oh общая формула: r-oh, например ch3oh (метанол или метиловый спирт) бывают предельные, непредельные, одноатомные и многоатомные спирты, есть ещё ароматические
из-за наличия ароматического кольца и гидроксильной группы фенол проявляет свойства, характерные как для спиртов, так и для ароматических углеводородов.
по гидроксильной группе:
обладает слабыми кислотными свойствами (более сильными, чем у спиртов), при действии щелочей образует соли — феноляты (например, фенолят натрия — c6h5ona): {\displaystyle {\mathsf {c_{6}h_{5}oh+naoh\rightarrow c_{6}h_{5}ona+h_{2}o}}}фенол — слабая кислота; даже угольная кислота вытесняет его из фенолятов:
{\displaystyle {\mathsf {c_{6}h_{5}ona+h_{2}co_{3}\rightarrow c_{6}h_{5}oh+nahco_{3}}}}более интенсивно феноляты разлагаются под действием сильных кислот, например, серной:
{\displaystyle {\mathsf {c_{6}h_{5}ona+h_{2}so_{4}\rightarrow c_{6}h_{5}oh+nahso_{4}}}} взаимодействие с металлическим натрием: {\displaystyle {\mathsf {2c_{6}h_{5}oh+2na\rightarrow 2c_{6}h_{5}ona+h_{2}\uparrow }}} фенол непосредственно не этерифицируется карбоновыми кислотами, эфиры можно получить при взаимодействии фенолятов с или кислот: {\displaystyle {\mathsf {c_{6}h_{5}ona+ch_{3}cocl\rightarrow c_{6}h_{5}ococh_{3}+nacl}}}{\displaystyle {\mathsf {c_{6}h_{5}ona+(ch_{3}co)_{2}o\rightarrow c_{6}h_{5}ococh_{3}+ch_{3}coona}}} образование простых эфиров.для получения простых эфиров фенола действуют галогеналканами или галогенпроизводными аренов на феноляты. в первом случае получают смешанные жирно-ароматические простые эфиры:
{\displaystyle {\mathsf {c_{6}h_{5}ona+ch_{3}i\rightarrow c_{6}h_{5}och_{3}+nai}}}во втором случае получают чисто-ароматические простые эфиры:
{\displaystyle {\mathsf {c_{6}h_{5}ona+c_{6}h_{5}cl{\xrightarrow[{}]{cu}}c_{6}h_{5}oc_{6}h_{5}+nacl}}}реакция проводится в присутствии порошкообразной меди, которая служит катализатором.
при перегонке фенола с цинковой пылью происходит замещение гидроксильной группы водородом: {\displaystyle {\mathsf {c_{6}h_{5}oh+zn\rightarrow c_{6}h_{6}+zno}}}по ароматическому кольцу:
вступает в реакции электрофильного замещения по ароматическому кольцу. гидрокси-группа, являясь одной из самых сильных донорных групп (вследствие уменьшении электронной плотности на функциональной группе), увеличивает реакционную способность кольца к этим реакциям и направляет замещение в орто- и пара-положения. фенол с лёгкостью алкилируется, ацилируется, галогенируется, нитруется и сульфируется. реакция кольбе — шмитта служит для синтеза салициловой кислоты и её производных (ацетилсалициловой кислоты и других).{\displaystyle {\mathsf {c_{6}h_{5}oh+co_{2}{\xrightarrow[{}]{naoh}}c_{6}h_{4}oh(coona)}}}{\displaystyle {\mathsf {c_{6}h_{4}oh(coona)+h_{2}so_{4}\rightarrow c_{6}h_{4}oh(cooh)+nahso_{4}}}}взаимодействие с бромной водой (качественная реакция на фенол): {\displaystyle {\mathsf {c_{6}h_{5}oh+3br_{2}\rightarrow c_{6}h_{2}br_{3}oh+3hbr}}}образуется 2,4,6-трибромфенол — твёрдое вещество белого цвета.
взаимодействие с концентрированной азотной кислотой: {\displaystyle {\mathsf {c_{6}h_{5}oh+3hno_{3}\rightarrow c_{6}h_{2}(no_{2})_{3}oh+3h_{2}o}}} взаимодействие с хлоридом железа(iii) (качественная реакция на фенол[3]): {\displaystyle {\mathsf {6c_{6}h_{5}oh+fecl_{3}\rightarrow [fe(c_{6}h_{5}oh)_{6}]cl_{3}}}}реакция присоединения
гидрированием фенола в присутствии металлических катализаторов получают циклогексанол и циклогексанон: {\displaystyle {\mathsf {2c_{6}h_{5}oh+5h_{2}{\xrightarrow {t,p,kat: pt/pd,pd/ni,pd/al_{2}o_{3},ni/cr/al_{2}o_{3}}}c_{6}h_{11}oh+c_{6}h_{10}o}}}окисление фенола
вследствие наличия гидроксильной группы в молекуле фенола устойчивость к окислению намного ниже, чем у бензола. в зависимости от природы окислителя и условия проведения реакции получаются различные продукты.
так, под действием пероксида водорода в присутствии железного катализатора образуется небольшое количество двухатомного фенола — пирокатехина: {\displaystyle {\mathsf {c_{6}h_{5}oh+2h_{2}o_{2}{\xrightarrow[{-h_{2}o}]{kat: fe}}c_{6}h_{4}(oh)_{2}}}} при взаимодействии более сильных окислителей (хромовая смесь, диоксид марганца в кислой среде) образуется пара-хинон.активность фосфора значительно выше, чем у азота. свойства фосфора во многом определяются его аллотропной модификацией. белый фосфор активен, в процессе перехода к красному и черному фосфору активность резко снижается. белый фосфор на воздухе светится в темноте, свечение обусловлено окислением паров фосфора до низших оксидов.
в жидком и растворенном состоянии, а также в парах до 800 °с фосфор состоит из молекул р4. при нагревании выше 800 °с молекулы диссоциируют: р4= 2р2. при температуре выше 2000 °с молекулы на атомы.
взаимодействие с простыми веществамифосфор легко окисляется кислородом: 4p + 5o2 = 2p2o5,4p + 3o2 = 2p2o3.взаимодействует со многими простыми веществами – галогенами, серой, некоторыми металлами, проявляя окислительные и восстановительные свойства: с металлами – окислитель, образует фосфиды: 2p + 3ca = ca3p2.с неметаллами – восстановитель : 2p + 3s = p2s3,2p + 3cl2 = 2pcl3.не взаимодействует с водородом.взаимодействие с водойвзаимодействует с водой, при этом диспропорционирует: 4р + 6н2о = рн3 + 3н3ро2 (фосфорноватистая кислота).взаимодействие со щелочамив растворах щелочей диспропорционирование происходит в большей степени: 4р + 3koh + 3н2о = рн3 + 3kн2ро2 .восстановительные свойствасильные окислители превращают фосфор в фосфорную кислоту: 3p + 5hno3 + 2h2o = 3h3po4 + 5no; 2p + 5h2so4 = 2h3po4 + 5so2 + 2h2o.реакция окисления также происходит при поджигании спичек, в качестве окислителя выступает бертолетова соль: 6p + 5kclo3 = 5kcl + 3p2o5.Поделитесь своими знаниями, ответьте на вопрос:
Закончите соединение и назовите: caco3→ p2o5+h2o→ p+o2→
1. карбонат кальция
2. h3po4 ортофосфорная кислота
3. оксид фосфора(5) p2o5