1) Производная данной функции равна:
f ′(x) = (х^2 + 3х - 2)′ = 2х + 3.
2) Найдем значение производной данной функции в точке х0 = 1:
f ′ (1) = 2 * х + 3 = 2 * 1 + 3 = 2 + 3 = 5.
3) Найдем значение данной функции в точке х0 = 1:
f(х0) = f(1) = 1^2 + 3 * 1 - 2 = 1 + 3 - 2 = 2.
4) Составим уравнение касательной касательной по формуле у = f(x0) + f ′(x0) * (х - х0). Следовательно получим:
у = 2 + 5 * (х - 1) = 2 + 5 * х - 5 = 5х - 3 — уравнение касательной касательной к графику функции f(x) = х^2 + 3х - 2, в точке с абсциссой x0 = 1.
ответ: у = 5х - 3.
ответ: у = 6х - 8.
Начальный вклад был N0 = x млн руб.
В конце 1 года он пополнился на 10% и стал N1 = 1,1x млн. руб.
В конце 2 года он пополнился на 10% и стал N2 = 1,1*1,1x = 1,21x млн. руб.
В начале 3 года добавили 1 млн и стало N2 = (1,21x + 1) млн. руб.
В конце 3 года вклад пополнился на 10% и стал
N3 = 1,1*(1,21x + 1) = (1,331x + 1,1) млн. руб.
В начале 4 года добавили 1 млн и стало N3 = (1,331x + 2,1) млн руб.
В конце 4 года вклад пополнился на 10% и стал
N4 = 1,1*(1,331x + 2,1) = 1,4641x + 2,31 >= 10 млн руб.
1,4641x >= 10 - 2,31 = 7,69
x >= 7,69 / 1,4641 = 5,2523
Минимальное целое x = 6 млн руб.
Поделитесь своими знаниями, ответьте на вопрос:
:матроскин украсил цветочные ящики разноцветными кругами с радиусом 2 см. начертите окружность, радиус которой в 2 раза больше радиуса этих кругов.