catsk8
?>

Какой период охватывает бронзовый век на кубани

Математика

Ответы

Reznikova1075
Эта эпоха делится на три периода: эпоху ранней бронзы (3 тыс. лет до н. средней бронзы (2 тыс. лет до н. поздней бронзы (2 – 1 тыс. лет до н.   в середине и во второй половине 3-го тысячелетия до н. э. северо-западный кавказ населяли племена так называемой майкопской культуры. в этот же период в предгорной и горной части северо-западного кавказа появились мегалитические сооружения – дольмены.  свое название майкопская культура получила от знаменитого кургана, раскопанного в 1897 году недалеко от г. майкопа. высота его – 11 метров. основание кургана было окружено каменным кольцом – кромлехом. погребенный был буквально усеян золотыми украшениями, бусами из сердолика и бирюзы и др. могильная яма была размером 5,3 х 3,73 м, глубиной – 1,4 м; она была разделена на три части деревянными перегородками. в одном из отсеков ямы было, предположительно, захоронение вождя; он был положен скорченно на правом боку. погребенный был накрыт покрывалом, расшитым золотыми бляшками в виде фигурок бычков и львов. под черепом была найдена золотая диадема, что говорит о знатности погребенного. здесь же были найдены бронзовые и каменные орудия труда и охоты, два золотых и четырнадцать серебряных сосуда. особый интерес представляют два серебряных сосуда с чеканными рисунками. 
Палкина-Дроздова

В Первой задаче условие не дописано.

1) 17-8 = 9 часов в пути был первый путник

2) 20-9 = 11 часов в пути был второй путник

Весь путь обозначим за 1.

Тогда первый путник каждый час проходил 1/9 часть пути, а второй 1/11 часть пути.

К 13.00 Первый путник успел пройти 13-8 = 5 ч   5/9 пути

К 13.00 Второй путник успел пройти  13 - 9 = 4 ч     4/11 пути

часть пути они вместе, это не весь путь (меньше 1) значит они еще не встретились

К 15.00    Первый путник  15 - 8 = 7 ч      7/9 пути первый путник

К 15.00    Второй путник   15- 9 = 6 ч       6/11 пути второй путник

7/9 и 6/11 эти две дроби больше  чем половина пути, поэтому они точно встретились до 15.00

Пошаговое объяснение:

Kochinev7

ке можно расставить на остальных позициях дру-

гие книги можно расставить Поэтому согласно

правилу произведения вся расстановка книг, изображенная на рис 2.1,

может быть получена Чтобы получить все

требуемые условием задачи расстановки книг, нужно тройку книг по ма-

тематике переставить с 1-3 позиций на 2-4, 3-5,..,8-10 позиции, не изме-

няя порядок расположения книг внутри "математической" и "нематема-

тической" групп. Таких "сдвижек" будет 8, и для каждой такой "сдвижки"

возможна перестановка книг внутри "математической" и "нематематиче-

ской" групп Значит, общее число благоприятствующих

исходов равно k = 8k3 = 8 ⋅ 3!⋅7! . Вероятность события находим по форму-

ле (2.1) и получаем p = k/n = 8 ⋅ 3! ⋅ 7!/10! = 1/ 15 = 0 ,067 .

ответ: 0,067.

Пример 6. Пять мужчин и десять женщин случайным образом по

трое рассаживаются за 5 столиков. Какова вероятность того, что за каж-

дым столиком окажется мужчина?

Решение. Найдем сначала общее число исходов. За первый столик

могут сесть любые три человека из 15, такая посадка осуществляется За второй столик может сесть любая тройка из ос-

3

тавшихся 12 человек, такая посадка осуществляется Аналогично посадку за 3,4,5 столики можно осуществить Поэтому по правилу произведения

9 6 3

общее число исходов равно

n = n1 ⋅ n2 ⋅ n3 ⋅ n4 ⋅ n5 = C15 ⋅ C12 ⋅ C9 ⋅ C6 ⋅ C3 = 15! / 6 5.

3 3 3 3 3

Аналогично одного мужчину и две женщины за первый столик мож-

но посадить за второй, третий, четвертый, пятый

2

столики - соответственно бами. Значит, число благоприятствующих исходов равно

k = k1 ⋅ k 2 ⋅ k3 ⋅ k 4 ⋅ k5 = 5! ⋅ C10 ⋅ C8 ⋅ C6 ⋅ C4 = 5! ⋅ 10!/ 2 5 .

2 2 2 2

Следовательно,

k 5!⋅10! 15! 35 ⋅ 5!

p= = 5 : 5 = = 0 ,081.

n 2 6 15 ⋅ 14 ⋅ 13 ⋅ 12 ⋅ 11

ответ: 0,081.

2.1. В магазин поступило 30 новых телевизоров, среди которых 5

имеют скрытые дефекты. Найти вероятность того, что купленный телеви-

зор не имеет скрытых дефектов.

12

2.2. Игральная кость подбрасывается один раз. Найти вероятности

событий: A = {число очков на верхней грани равно 6}, B = {число очков

кратно 3}, C = {число очков меньше 5}.

2.3. Из колоды в 36 карт наугад вытаскивается одна. Найти вероят-

ности событий: A = {карта имеет масть "пик"}, B = {карта имеет черную

масть}, C = {вытащен туз}, D = {вытащен туз "пик"}.

2.4. Куб, все грани которого окрашены, распилен на 1000 кубиков

одинакового размера. Кубики перемешиваются, а затем наугад вытаски-

вается один из них. Найти вероятности событий: A = {кубик имеет

три окрашенные грани}, B = {кубик имеет две окрашенные грани}, C =

{кубик имеет одну окрашенную грань}.

2.5. На шахматную доску случайным образом ставят две ладьи: бе-

лую и черную. Какова вероятность того, что ладьи не бьют друг друга?

2.6. На 9 карточках написаны цифры от 1 до 9. Определить вероят-

ность того, что число, составленное из двух наугад взятых карточек, де-

лится на 18.

2.7. На 8 карточках написаны числа: 2,4,6,7,8,11,12,13. Из двух нау-

гад взятых карточек составлена дробь. Какова вероятность того, что она

сократима?

2.8. Одновременно подбрасывается две кости. Найти вероятности

событий: A = {количество очков на верхних гранях одинаково}, B = {на

верхних гранях выпадет в сумме 8 очков}, C = {сумма очков четна}, D =

{хотя бы на одной кости появится цифра 6}.

2.9. Телефонный номер состоит из 6 цифр. Некто забыл номер теле-

фона, но помнит, что он состоит из нечетных цифр. Какова вероятность

того, что номер будет угадан с первой попытки?

2.10. Поезд метро состоит из 6 вагонов. Какова вероятность того, что

3 пассажира сядут в один вагон?

2.11. Зенитная батарея, состоящая из n орудий, производит залп по

группе из m самолетов. Каждое орудие выбирает себе цель наудачу неза-

висимо от остальных. Найти вероятность того, что все орудия выстрелят

по одному самолету.

2.12. Пяти радиостанциям разрешено вести передачи на шести час-

тотах. Каждая радиостанция наудачу выбирает себе частоту. Найти веро-

ятности событий: A = {все радиостанции работают на одной частоте}, B

= {хотя бы две радиостанции работают на разных частотах}, C = {все ра-

диостанции работают на разных частотах}.

2.13. Числа 1,2,...,20 написаны на карточках. Карточки тщательно

перетасовываются, а затем вытаскиваются две из них. Какова вероят-

ность того, что сумма чисел на вынутых карточках равна 30?

2.14. Цветочница выставила на продажу 15 белых и 10 красных роз.

Некто подобрать ему букет из 5 роз. Какова вероятность того, что

в букете будет 2 белые и 3 красные

Пошаговое объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какой период охватывает бронзовый век на кубани
Ваше имя (никнейм)*
Email*
Комментарий*