Пусть x задуманное число, тогда по условию составляем уравнение: 0,8*0,8*х=25,6 0,64*х=25,6 х=25,6: 0,64 х=40 ответ: 40 задуманное число
Andrei-Shchukin
11.08.2021
Симметрия — слово греческого происхождения, как и многие другие слова, которые связаны с . оно означает соразмерность, наличие определённого порядка, закономерности в расположении частей. смотря на объекты вокруг, мы не раз восклицаем: «какая симметрия! » люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта, в архитектуре, художестве, строительстве. но симметрия широко распространена и в природе, где не было вмешательства человеческой руки. её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, морской звезде. пока рассмотрим две симметрии на плоскости: относительно точки и прямой.центральная симметриясимметрию относительно точки называют центральной симметрией.точки m и m1 симметричны относительно некоторой точки o, если точка o является серединой отрезка mm1. точка o называется центром симметрии. алгоритм построения центрально-симметричных фигур.построим треугольник a1b1c1, симметричный треугольнику abc, относительно центра (точки) o: 1. для этого соединим точки a, b, c с центром o и продолжим эти отрезки; 2. измерим отрезки ao, bo, coи отложим с другой стороны от точки o, равные им отрезки ao=oa1; bo=ob1; co=oc1; 3. соединим получившиеся точки отрезками и получим треугольник a1b1c1, симметричный данному треугольнику abc.фигуры, симметричные относительно некоторой точки, равны. фигура симметрична относительно центра симметрии, если для каждой этой точки фигуры симметричная ей точка также лежит на этой фигуре. такая фигура имеет центр симметрии (фигура с центральной симметрией).есть фигуры с центральной симметрией это, например, окружность и параллелограмм. у окружности центр симметрии — это её центр, у параллелограмма центр симметрии — это точка, в которой пересекаются его диагонали. есть много фигур, у которых нет центра симметрии.осевая симметрия осевая симметрия — это симметрия относительно проведённой прямой (оси).точки m и m1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии. алгоритм построения фигуры, симметричной относительно некоторой прямой. построим треугольник a1b1c1, симметричный треугольнику abc относительно красной прямой: 1. для этого проведём из вершин треугольника abc прямые, перпендикулярные оси симметрии и продолжим их дальше на другой стороне оси. 2. измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния. 3. соединим получившиеся точки отрезками и получим треугольник a1b1c1, симметричный данному треугольнику abc.фигуры, симметричные относительно прямой, равны. фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры, симметричная для неё точка относительно данной прямой также находится на этой фигуре. прямая является в этом случае осью симметрии фигуры.иногда у фигур несколько осей симметрии: для неразвёрнутого угла существует единственная ось симметрии — это биссектриса данного угла.для равнобедренного треугольника есть единственная ось симметрии.для равностороннего треугольника — три оси.для прямоугольника и ромба существуют две оси симметрии.для квадрата — целых четыре.для окружности осей симметрии бесчисленное множество — это каждая прямая, которая проходит через центр этой фигуры.
vlsvergun59
11.08.2021
Решение: 1) противолежащие стороны прямоугольника равны, тогда сумма длины и ширины равна половине периметра, 28 : 2 = 14(дм). пусто одна из его сторон равна х дм, тогда другая его сторона равна (14 - х) дм. 2) площадь прямоугольника равна произведению его измерений, тогда х · (14 - х) = 48 (дм²) решим получившееся уравнение: если одна из сторон равна 6 дм, то вторая сторона равна 14 - 6 = 8 (дм). и наоборот, если одна из сторон равна 8 дм, то другая его сторона равна 14 - 8 = 6(дм). измерения прямоугольника - 6 дм и 8 дм. ответ: 6 дм и 8 дм.