1) припустимо, що площа першої ділянки становить х га.
2) тоді 0,4 х га становить площу другої ділянки і (х + 17) га — площа третьої ділянки.
3) (х + 0,4 х + (х + 17)) га-Загальна площа цих трьох земельних ділянок, що за умовою завдання становить 833 га. тому можливо записати:
х + 0,4 х + (х + 17) = 833.
4) вирішимо рівняння:
х + 0,4 х + х + 17 = 833;
2,4 х + 17 = 833;
2,4 х = 833 - 17;
2,4 х = 816;
х = 816 : 2,4;
х = 340.
5) знаходимо, що площа першої ділянки дорівнює 340 га.
6) обчислимо площі інших ділянок:
340 * 0,4 = 136 га — другого;
340 + 17 = 357 га — третього.
Відповідь: 340 га; 136 га і 357 га.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
ответ:ето
Пошаговое объяснение:
Примеры
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36