Все такие числа разобьем на две группы: в записи которых есть ноль и в записи которых нет нуля.
1. Найдем количество чисел, в записи которых нет нуля.
Найдем число выбрать 2 цифры, участвующие в записи числа, из 9 оставшихся:
C_9^2=\dfrac{9\cdot8}{2} =36C
9
2
=
2
9⋅8
=36
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры:
2^4=162
4
=16
Заметим, что в одном из этих используется только первая цифра и еще в одном из используется только вторая. Так как по условию необходимо использовать ровно две различные цифры, то эти не нужно учитывать. Таким образом, число составить четырехзначное число с требуемым ограничением:
2^4-2=142
4
−2=14
Итак, выбрать цифры для записи числа можно и для каждого из них можно записать 14 чисел. Значит, всего чисел, в записи которых нет нуля, можно записать:
36\cdot14=\boxed{504}36⋅14=
504
2. Найдем количество чисел, в записи которых есть ноль.
Вторую цифру для записи числа из 9 оставшихся можно выбрать, очевидно
Найдем сколькими можно составить четырехзначное число, используя для этого две цифры, одна из которых 0. На первом месте не может находиться цифра 0, так как в противном случае число не будет четырехзначным. Значит, вариантов составления четырехзначного числа:
2^3=82
3
=8
Отметим, что среди этих есть один недопустимый - когда на последних трех местах повторяется цифра, отличная от нуля. На первом месте однозначно находится она же, значит всего в записи числа будет использоваться одна цифра, что не соответствует условию. Значит, число составить четырехзначное число, учитывая ограничение:
2^3-1=72
3
−1=7
Таким образом, выбрать цифры для записи числа можно и для каждого из них можно записать 7 чисел. Значит, всего чисел, в записи которых есть ноль, можно записать:
9\cdot7=\boxed{63}9⋅7=
63
3. Общее количество четырехзначных чисел, в записи которых используется ровно две различные цифры:
504+63=\boxed{567}504+63=
567
ответ: 567
Равными называют треугольники, у которых соответствующие стороны равны.
Теорема (первый признак равенства треугольников).
Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.
Теорема (второй признак равенства треугольников).
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Теорема (третий признак равенства треугольников).
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Признаки подобия треугольников
Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны: , , где  — коэффициент подобия.

I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.
II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Следствие: Площади подобных треугольников относятся как квадрат коэффициента подобия:
Поделитесь своими знаниями, ответьте на вопрос:
Ломаная состоит из четырёх одинаковых звеньев, длиной 3см каждое. найди длину этой ломаной.