million2003
?>

Правильно отмечайте точки на координатной плоскости и проводить прямые mn и kp.​

Математика

Ответы

mrilyushchenko6

0 или 4

Пошаговое объяснение:

Заметим, что из двух четных чисел, появляется четное; из двух нечетных - четное, а из нечетного и четного - нечетное, таким образом после ход кол-во нечетных может уменьшиться на 2, а может не измениться, то есть четность количества нечетных чисел не меняется, так как вначале было 50 нечетных чисел, то в конце останется четное число нечетных чисел, а так как останется в конце только 1 число, то нечетных чисел в конце не будет, то есть ответы 1,9 не подходят. Докажем, что оно может быть равно как 0, так и 4

Первым делом разобьем числа на пары (1,2), (3,4), ... (99,100) выпишем в них модули разности, и у нас останется 50 единиц, тогда разобьем на 25 пар из двух единиц. Теперь в 23 парах запишем модуль разности, то есть 0, а в двух оставшихся сумму, то есть 2. Таким образом у нас остались 2 двойки и куча нулей. Теперь каждый из наших 0 будем складывать с двойкой, чтобы у нас исчезли все 0 и осталось только две двойки. Теперь, когда осталось ровно две двойки, мы можем их сложить, тогда единственным числом будет 4, а можем взять модуль разности, и у нас будет 0.  Таким образом, в конце может остаться как 0, так и 4, а 1 и 9 не могут

Anastasiya81

Составим уравнение касательной к графику функции y=x^2+mx+4 в точке x=x_0.

Значение функции в точке касания:

y(x_0)=x_0^2+mx_0+4

Найдем производную:

y'=2x+m

Значение производной в точке касания:

y'(x_0)=2x_0+m

Уравнение касательной имеет вид:

y_k=y(x_0)+y'(x_0)(x-x_0)

Подставим найденные соотношения:

y_k=x_0^2+mx_0+4+(2x_0+m)(x-x_0)

y_k=x_0^2+mx_0+4+2x_0x+mx-2x_0^2-mx_0

y_k=(2x_0+m)x+4-x_0^2

Так как по условию касательная проходит через начало координат, то она является прямой пропорциональностью и свободный член 4-x_0^2 равен нулю:

4-x_0^2=0

x_0^2=4

x_0=\pm2

Так как по условию абсцисса точки касания отрицательна, то остается вариант x_0=-2

Уравнение касательной принимает вид:

y_k=(2\cdot(-2)+m)x

y_k=(m-4)x

Зная, что касательная в точке касания имеет ординату 2, найдем значение m:

2=(m-4)\cdot(-2)

m-4=-1

m=3

ответ: 3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Правильно отмечайте точки на координатной плоскости и проводить прямые mn и kp.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Kashtanov Anna
Ingakazakova
ПолухинаТененева565
petr2077
Вячеславович-Дмитрий1694
kristal1
korotaeva778898
Nadezhda
intermar2000
nata27-73589
oalexandrova75
falileevas
Vyacheslavovich1431
Вычисли 0, 1n, ес если n = = 3.
most315
mvv-155