Для того, чтобы представить в виде многочлена выражение (5 + 2y)(y^2 + 2y - 3) мы прежде всего выполним умножения многочлена на многочлен.
Итак, выполняем умножения и получаем выражение равносильное заданному:
(5 - 2y)(y^2 + 2y - 3) = 5 * y^2 + 5 * 2y - 5 * 3 - 2y * y^2 - 2y * 2y + 2y * 3 = 5y^2 + 10y - 15 - 2y^3 - 4y^2 + 6y.
Нам теперь нужно выполнить группировку и приведение подобных слагаемых в полученном выражении:
5y^2 + 10y - 15 - 2y^3 - 4y^2 + 6y = -2y^3 + 5y^2 - 4y^2 + 10y + 6y - 15 = 3y^2 - 4y^2 + 16y -15.
Условие
Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Подсказка
Разложите число 1995 на простые множители.
Решениена
1995 = 3·5·7·19. Надо разбить это произведение на две группы: часть множителей войдёт в исходное число, а другая часть будет его цифрами. Ясно, что 19 войдёт в искомое число (цифры "19": нет!). Остаётся несложный перебор, который даёт единственный ответ: 57·5·7 = 1995.
ответ
57.
Пошаговое объяснение:
просто подстав замість 1995 3666
Поделитесь своими знаниями, ответьте на вопрос:
Какая из дробей больше 5/7 или 7/9? ))