(0;2]U[4;6)
Пошаговое объяснение:
ОДЗ:
{x > 0;
{6–x > 0 ⇒ x < 6
{(x4–12x3+36x2) > 0⇒ (x·(6–x))2 > 0 ⇒ x≠0; x≠6
ОДЗ: х∈(0;6)
при х∈(0;6):
log2(x4–12x3+36x2)=log2x2·(6–x)2=
log2(x·(6–x))2=2log2x·(6–x)=2log2x+2log2(6–x)
Неравенство принимает вид:
(2–log2x)·(log2(6–x)–2) ≥ 0
Применяем обобщенный метод интервалов
log2x=2 или log2(6–x)=2
x=4 или 6–х=4;х=2
При х=1
(2–log21)·(log2(6–1)–2)=2·(log25–log24) > 0
При х=3
(2–log23)·(log2(6–3)–2)=–(2–log23)2 < 0
При х=5
(2–log25)·(log2(6–5)–2)=(log24–log25)·(0–2) > 0
(0)__+__ [2]__–__[4]__+__ (6)
1) 4*12,3=49,2 км-ехал 4 часа2) 2*11,7=23,4 км-ехал 2 часа3)4+2=6 ч-вес путь4)v=s1+s2/t
(49,2+23,4): 6=72,6: 6=12,1 км/час-средняя скорость велосипедиста на всём пути. 1)1,9*7=13,3 сумма 7 чисел 2)9,36+13,3=22,66 сумма этих 11 чисел 3)22,66: 11=2,06 среднее арифметическое этих 11 чиселПоделитесь своими знаниями, ответьте на вопрос:
Выражений при переместительного и сочетательного свойства умножения и деления распределительного свойства умножения - определение