425СМ2
Пошаговое объяснение:
Обозначим трапецию АВСD; BC||AD. BC=b=11 см, AD=a=25 см
Опустим из вершины В высоту ВН.
Высота равнобедренной трапеции, опущенная из вершины тупого угла, делит основание на отрезки, меньший из которых равен полуразности оснований, больший - их полусумме. ⇒
АН=(25-11):2=7 см
DH=(25+11):2=18 см
ВС||AD, диагональ трапеции ВD- секущая. ⇒ ∠СВD=∠BDA (по свойству накрестлежащих углов)..
ВD - биссектриса угла В, поэтому и ∠АВD=∠BDA. Углы ∆ АВD при основании BD равны, ⇒ ∆ АВD равнобедренный, АВ=АD=25 см.
Из ∆ АВН по т.Пифагора ВН=24 ( стороны ∆ АВН из Пифагоровых троек).
Площадь трапеции равна произведению полусуммы оснований на высоту. Полусумма оснований DH=18 см
Ѕ(ABCD)=HD•BH=18•24=432 см²
Поделитесь своими знаниями, ответьте на вопрос:
Начерти прямоугольник abcdдлина которго равна 6 см а ширина 2 см.проведи в нем диагонали и обозначь точку их пересечения буквой о.начерти окружностьс центром в точке ои радиусом оа
Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго – 40 км/ч. Чему равна скорость удаления между автомобилями? Какое расстояние будет между автомобилями через 3 часа? Через сколько часов расстояние между ними будет 200 км?
Решение: Сначала узнаем скорость удаления автомобилей друг от друга, для этого вычтем из большей скорости меньшую: 80 - 40 = 40 (км/ч)
Каждый час автомобили отдаляются друг от друга на 40 км. Теперь можно узнать сколько километров будет между ними через 3 часа, для этого скорость удаления умножим на 3: 40 · 3 = 120 (км)
Чтобы узнать через сколько часов расстояние между автомобилями станет 200 км, надо расстояние разделить на скорость удаления: 200 : 40 = 5 (ч)
ответ: Скорость удаления между автомобилями равна 40 км/ч. Через 3 часа между автомобилями будет 120 км. Через 5 часов между автомобилями будет расстояние в 200 км.
Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов: 5 - 4 = 1 (км/ч)
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км).
Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого: 5 : 1 = 5 (ч) Решение задачи по действиям можно записать так: 1) 5 - 4 = 1 (км/ч) – это скорость сближения пешеходов 2) 5 : 1 = 5 (ч)
ответ: Через 5 часов второй пешеход догонит первого.