ответ:Дана функция у = 2х² - х⁴.
1.Область определения функции: x ∈ R, или -∞ < x < ∞.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
2х² - х⁴ = 0, х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.
x₁ = 0.
x₂ = √2.
х₃ = -√2.
Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.
3. Промежутки знакопостоянства функции.
Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.
По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:
(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).
Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.
x = -2 -1 1 2
y = -8 1 1 -8.
В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.
4. Симметрия графика (чётность или нечётность функции).
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}
- Да
- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}
- Нет
Значит, функция является чётной.
5. Периодичность графика - нет.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Находим производную заданной функции:
y' = 4x - 4x³.
Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0,
4x = 0, x = 0.
x² = 1, х = 1, x = -1.
Критических точек три: х = 0, х = 1, x = -1.
Находим значения производной левее и правее от критических.
x = -2 -1 -0.5 0 0.5 1 2
y' = 24 0 -1.5 0 1.5 0 -24.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
Убывает на промежутках (-oo, -1] U [0, oo).
Возрастает на промежутках (-oo, 0] U [1, oo).
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.
Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = - \frac{\sqrt{3}}{3}
x_{2} = \frac{\sqrt{3}}{3}
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].
Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.
10. Дополнительные точки, позволяющие более точно построить график.
11. Построение графика функции - дан в приложении.
Пошаговое объяснение: проверено на себе
Відповідь:
Функция, получающая бесконечно малые приращения прибесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной призначении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0, значенияфункции f (x) отличаются сколь угодно мало от её значения f (x0). Точнее, функция f (х) называетсянепрерывной при значении аргумента x0 (или, как говорят, в точке x0), если каково бы ни было ε > 0, можноуказать такое δ > 0, что при |х — х0| < δ будет выполняться неравенство |f (x) — f (x0)| < ε. Это определениеравносильно следующему: функция f (x) непрерывна в точке x0, если при х, стремящемся к x0, значениефункции f (x) стремится к пределу f (x0). Если все условия, указанные в определении Н. ф., выполняютсятолько при х ≥ х0 или только при х ≤ х0, то функция называется, соответственно, непрерывной справа илислева в точке x0. Функция f (x) называется непрерывной н а отрезке [а, b], если она непрерывна в каждойточке х при а < х < b и, кроме того, в точке а непрерывна справа, а в точке b — слева. Понятию Н. ф. противопоставляется понятие разрывной функции (См. Разрывные функции). Одна и таже функция может быть непрерывной для одних и разрывной для других значений аргумента. Так, дробнаячасть числа х [её принято обозначать через (х)], например
Покрокове пояснення:
Поделитесь своими знаниями, ответьте на вопрос:
Радиусы оснований усеченного конуса равны 1 и 2. образующая наклонена под углом 45°. найдите объем.