annasolod
?>

Радиусы оснований усеченного конуса равны 1 и 2. образующая наклонена под углом 45°. найдите объем.

Математика

Ответы

Sacharov84
Солнечное тепло неодинаково поступает в высокие и низкие широты. это связано с тем, что отличаются углы наклона лучей нашего светила к поверхности земли. отсюда и появилось понятие о климате. чем севернее расположена территория, тем меньше получает она тепла на единицу поверхности. это связано с более низким подъемом солнца в полдень.
АлександровнаАслан1571

ответ:Дана функция у = 2х² - х⁴.

1.Область определения функции: x ∈ R, или -∞ < x < ∞.

2. Нули функции. Точки пересечения графика функции с осью ОХ.

2х² - х⁴ = 0,   х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.

x₁ = 0.

x₂ = √2.

х₃ = -√2.

Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.

3. Промежутки знакопостоянства функции.

Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.

По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:

(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).

Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.

x = -2    -1    1     2

y = -8     1    1    -8.

В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.

4. Симметрия графика (чётность или нечётность функции).

Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).

Итак, проверяем:

- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}

- Да

- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}

- Нет

Значит, функция является чётной.

5. Периодичность графика - нет.

 6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.

7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.

Находим производную заданной функции:

y' = 4x - 4x³.

Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0, 

4x = 0,  x = 0. 

x² = 1,  х = 1,  x = -1.

Критических точек три: х = 0, х = 1,  x = -1.

Находим значения производной левее и правее от критических.

x =  -2     -1    -0.5    0     0.5     1       2 

y' = 24      0    -1.5    0    1.5      0     -24.

Где производная положительна - функция возрастает, где отрицательна - там убывает. 

Убывает на промежутках (-oo, -1] U [0, oo).

Возрастает на промежутках (-oo, 0] U [1, oo).

8. Интервалы выпуклости, точки перегиба.

Найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции: 

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.

Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.

Решаем это уравнение.

Корни этого уравнения:

x_{1} = - \frac{\sqrt{3}}{3}

x_{2} = \frac{\sqrt{3}}{3}

Интервалы выпуклости и вогнутости:

Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].

Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).

9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.

10. Дополнительные точки, позволяющие более точно построить график.

11. Построение графика функции - дан в приложении.

Пошаговое объяснение: проверено на себе

gurman171

Відповідь:

Функция, получающая бесконечно малые приращения прибесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной призначении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0, значенияфункции f (x) отличаются сколь угодно мало от её значения f (x0). Точнее, функция f (х) называетсянепрерывной при значении аргумента x0 (или, как говорят, в точке x0), если каково бы ни было ε > 0, можноуказать такое δ > 0, что при |х — х0| < δ будет выполняться неравенство |f (x) — f (x0)| < ε. Это определениеравносильно следующему: функция f (x) непрерывна в точке x0, если при х, стремящемся к x0, значениефункции f (x) стремится к пределу f (x0). Если все условия, указанные в определении Н. ф., выполняютсятолько при х ≥ х0 или только при х ≤ х0, то функция называется, соответственно, непрерывной справа илислева в точке x0. Функция f (x) называется непрерывной н а отрезке [а, b], если она непрерывна в каждойточке х при а < х < b и, кроме того, в точке а непрерывна справа, а в точке b — слева.         Понятию Н. ф. противопоставляется понятие разрывной функции (См. Разрывные функции). Одна и таже функция может быть непрерывной для одних и разрывной для других значений аргумента. Так, дробнаячасть числа х [её принято обозначать через (х)], например  

Покрокове пояснення:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Радиусы оснований усеченного конуса равны 1 и 2. образующая наклонена под углом 45°. найдите объем.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Людмила Анна
Belov
Светлана308
anna-leonova
aetolstih
Arsen0708
alekseymedvedev1981
татьяна1245
galtig83
olartamonov6
VSpivak3122
Анастасия Елена
Zashchitin Denis
Galina_Yurevna
YuREVICh646