Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение:
(-8; 4).
Пошаговое объяснение:
Система неравенств:
7(3x + 2) - 3(7x + 2) > 2x;
(x - 5)*(x + 8) < 0.
1. Решим первое неравенство системы. Раскроем скобки:
7(3x + 2) - 3(7x + 2) > 2x;
21х + 14 - 21х - 6 > 2x;
8 > 2x;
2х < 8;
х < 8/2;
х < 4.
2. Решим второе неравенство системы. Чтобы произведение было меньше 0, нужно чтобы один из множителей был меньше нуля:
х - 5 < 0 ⇒ х < 5;
х + 8 < 0 ⇒ х < -8.
3. Оба решения двух неравенств системы, данной по условию, пересекаются на множестве чисел от -8 до 4, тогда ответ будет (-8; 4). Так как неравенства, данные по условию, строгие, что числа -8 и 4 не входят в множество решений.
ответ: (-8; 4).
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнения! a) 0, 01x^2 - 100 = 0 b) 16x^2 - 25 = 0 c)4/9x^2 - 25/144 = 0