со времён пифагорейцев традиционно различают следующие виды фигурных чисел[1]:
линейные числа — числа, не разлагающиеся на сомножители, то есть их ряд совпадает с рядом простых чисел, дополненным единицей: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, … (последовательность a008578 в oeis) плоские числа — числа, представимые в виде произведения двух сомножителей, то есть составные: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, … (последовательность a002808 в oeis) частным случаем являются прямоугольные числа, являющееся произведением двух последовательных целых чисел, то есть имеющие вид n ( n + 1 ) .{\displaystyle n(n+1).} телесные числа — числа, представимые произведением трёх сомножителей: 8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144, … (последовательность a033942 в oeis) многоугольные числа — числа, ассоциированные с определённым многоугольником..НОД (220; 360) = 20.
Как найти наибольший общий делитель для 220 и 360
Разложим на простые множители 220
220 = 2 • 2 • 5 • 11
Разложим на простые множители 360
360 = 2 • 2 • 2 • 3 • 3 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 2 , 5
Находим произведение одинаковых простых множителей и записываем ответ
НОД (220; 360) = 2 • 2 • 5 = 20
НОК (Наименьшее общее кратное) 220 и 360
Наименьшим общим кратным (НОК) 220 и 360 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (220 и 360).
НОК (220, 360) = 3960
Как найти наименьшее общее кратное для 220 и 360
Разложим на простые множители 220
220 = 2 • 2 • 5 • 11
Разложим на простые множители 360
360 = 2 • 2 • 2 • 3 • 3 • 5
Выберем в разложении меньшего числа (220) множители, которые не вошли в разложение
11
Добавим эти множители в разложение бóльшего числа
2 , 2 , 2 , 3 , 3 , 5 , 11
Полученное произведение запишем в ответ.
НОК (220, 360) = 2 • 2 • 2 • 3 • 3 • 5 • 11 = 3960
Поделитесь своими знаниями, ответьте на вопрос:
Верно ли утверждение? поясните свой ответ на примерах. 1)сумма двух любых двузначных чисел больше 20. 2)не существует верных неравенств. 3)любое трехзначное число записывается тремя разными цифрами.