ответ: -1/(y-2)+1/[2*(x+1)²]-1=0.
Пошаговое объяснение:
Разделив уравнение на (x+1)³*(y-2²), запишем его в виде dy/(y-2)²-dx/(x+1)³=0. Так как d(y-2)=dy и d(x+1)=dx, то окончательно это уравнение можно переписать в виде d(y-2)/(y-2)²-d(x+1)/(x+1)³=0. Интегрируя, находим -1/(y-2)+1/[2*(x+1)²]=C, где C - произвольная постоянная. Используя теперь условие y(0)=0, получаем уравнение 1/2+1/2=С, откуда C=1. Тогда искомый частный интеграл таков: -1/(y-2)+1/[2*(x+1)²]=1, или -1/(y-2)+1/[2*(x+1)²]-1=0.
Проверка: исходное уравнение можно записать в виде dy/dx=y'=(y-2)²/(x+1)³. Дифференцируя найденное решение по x и учитывая, что y есть функция от x, получаем: y'/(y-2)²-1/(x+1)³=0. Отсюда y'=dy/dx=(y-2)²/(x+1)³, то есть мы получили исходное дифференциальное уравнение. А это означает, что решение найдено верно.
10/9 часа пройдёт от момента их выхода на прогулку до встречи
Пошаговое объяснение:
Найдем вначале время, за которое второй человек (с большей скоростью) дошел до опушки.
Из формулы S = V * t имеем: t = S/V = 3,5 : 3,6 = 35/36 ч.
А первый (с меньшей скоростью) за это время путь:
S = V * t = 2,7 * 35/36 = 21/8 км.
Это значит, что расстояние (3,5 - 21/8) = 7/8 км они двигались навстречу друг другу с общей скоростью (2,7 + 3,6) = 6,3 км/ч.
Вычислим время, через которое они встретились с момента, когда второй человек развернулся и пошёл обратно, навстречу первому:
7/8 : 6,3 = 5/36 ч.
И, наконец, вычислим время от момента их выхода на прогулку до встречи:
35/36 + 5/36 = 40/36 = 10/9 часа
Поделитесь своими знаниями, ответьте на вопрос:
Вмагазин 167 л подсолнесного масла и 3 одинаковых ёмкости с оливковым маслом всего 236 л масла сколькооливкогово маслав одной ёмкости