Bezzubova_Stepanov1355
?>

Найдите наименьшее значение функции f(x)=2x³+3x²-36x на промежутке [-2; 1]​

Математика

Ответы

ilysozkn27

Найдём производную

y'=(2x^3+3x^2-36x)'=3*2x^{3-1}+2*3x^{2-1}-36=6x^2+6x-36

Сократим на 6 и приравняем к 0:

x^2+x-6=0

По теореме Виета:

\left \{ {{x_1*x_2=-6} \atop {x_1+x_2=-1}} \right. -\left \{ {{x_1=2} \atop {x_2=-3}} \right.

оба  корня не входят в промежуток [-2;1]

Найдём значение функции на концах отрезка

y(-2)=2*(-2)^3+3*(-2)^2-36*(-2)=-16+12+72=68 - max

y(1)=2*1^3+3*1^2-36*1=2+3-36=-31 -min

ВостриковаСтародубцева1980
Среднее арифметическое набора чисел определяется как их сумма, деленная на их количество. То есть сумма всех чисел набора делится на количество чисел в этом наборе.

Наиболее простой случай - найти среднее арифметическое двух чисел x1 и x2. Тогда их среднее арифметическое X = (x1+x2)/2. Например, X = (6+2)/2 = 4 - среднее арифметическое чисел 6 и 2.
2
Общая формула для нахождения среднего арифметического n чисел будет выглядеть так: X = (x1+x2+...+xn)/n. Ее можно также записать в виде: X = (1/n)Σxi, где суммирование ведется по индексу i от i = 1 до i = n.

К примеру, среднее арифметическое трех чисел X = (x1+x2+x3)/3, пяти чисел - (x1+x2+x3+x4+x5)/5.
3
Интерес представляет ситуация, когда набор чисел представляет собой члены арифметической прогрессии. Как известно, члены арифметической прогрессии равны a1+(n-1)d, где d - шаг прогрессии, а n - номер члена прогрессии.

Пусть a1, a1+d, a1+2d,...a1+(n-1)d - члены арифметической прогрессии. Их среднее арифметическое равно S = (a1+a1+d+a1+2d+...+a1+(n-1)d)/n = (na1+d+2d+...+(n-1)d)/n = a1+(d+2d+...+(n-2)d+(n-1)d)/n = a1+(d+2d+...+dn-d+dn-2d)/n = a1+(n*d*(n-1)/2)/n = a1+dn/2 = (2a1+d(n-1))/2 = (a1+an)/2. Таким образом среднее арифметическое членов арифметической прогрессии равно среднему арифметическому его первого и последнего членов.
4
Также справедливо свойство, что каждый член арифметической прогрессии равен среднему арифметическому предыдущего и последующего члена прогрессии: an = (a(n-1)+a(n+1))/2, где a(n-1), an, a(n+1) - идущие друг за другом члены последовательности.
s45983765471717

х – скорость  медленного,  собственная.

1,5 х –скорость  быстрого,  собственная.

у - скорость реки,   S- расстояние  от  А  до  В.

S=8(х+у)

S=6(1,5х+у)

8(х+у)= 6(1,5х+у)

8х+8у=9х+6у

х=2у     у=0,5х

Скорость  медленного  по  течению  1,5х (время 8 часов).

Скорость  быстрого  по течению  2х (время 6 часов).

Скорость  медленного  против   течения  х - 0,5х= 0,5х

Скорость  быстрого  против  течения  1,5х - 0,5х = х,  значит он  будет  возвращаться 12  часов.

Поскольку скорость возвращения медленного  в 2  раза  меньше быстрого,  он  будет возвращаться 24 часа.

24 – 12=12 часов  разница возвращения  катеров

Пошаговое объяснение:

это правильный ответ!

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите наименьшее значение функции f(x)=2x³+3x²-36x на промежутке [-2; 1]​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nikita
vovkiv7864
contact
смирнов1127
Nzharenikova
ynikolaev2657
galereyaas1568
Daulyatyanov1266
Dom540703174
Dlyamila
MislitskiiSergei1403
ss2911
homeo85
Lenok33lenok89
detymira