ответ:
симметрия в природе
целью данной работы является определение роли симметрии в живой и неживой природе.
симметрия является одной из наиболее и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. принципы симметрии играют важную роль в и , и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.
законы природы, неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.
существует две группы симметрии. к первой группе относится симметрия положений, форм, структур. это та симметрия, которую можно непосредственно видеть. она может быть названа симметрией. вторая группа характеризует симметрию явлений и законов природы. эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать симметрией.
исследование симметрии земли как планеты в целом позволяет систематически и с соответствующей детальностью проанализировать динамику формирования фигуры земли, т. е. рассмотреть качественную и количественную роль различных силовых полей, воздействие которых определяет эту фигуру.
суммарное воздействие силы земного тяготения можно изобразить в виде пучка бесчисленного множества одинаковых векторов, направленных к одной общей точке – центру земли. симметрия такого пучка, так же как и симметрия идеального и неподвижного шара отвечает бесчисленному множеству осей симметрии бесконечного порядка (осей вращения) и бесчисленному множеству плоскостей симметрии, пересекающихся в одной точке – центре шара. симметрия воздействующего на землю поля солнечной радиации соответствует, очевидно, симметрии конуса, ось которого совпадает с осью солнце – земля. поле солнечной радиации в окрестностях земли – симметрия цилиндра.
круговая симметрия обладает большой общностью. главная особенность кругового преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу, и всегда переходит в сферу другого радиуса. вот почему кристаллы любого вещества могут иметь самый разный вид, но углы между гранями всегда постоянны. каждая снежинка – это маленький кристалл замерзшей воды. форма снежинок может быть разнообразной, но все они симметрией – поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.
на явление симметрии в живой природе обратили внимание еще пифагорейцы в связи с развитием ими учения о гармонии. установлено, что в природе наиболее распространены два вида симметрии - «зеркальная» и «лучевая» (или «радиальная») симметрии.
у цветковых растений в большинстве проявляется радиальная и зеркальная симметрия. цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. к формам с лучевой симметрией относятся гриб, ромашка, сосновое дерево и часто такой вид симметрии называется «ромашко-грибной» симметрией. для листьев характерна зеркальная симметрия.
типы симметрии у животных: центральная; осевая; радиальная; билатеральная (зеркальная); поступательная и поступательно-вращательная; винтовая, а также спиральная симметрия. примером винтовой симметрии может служить раковина улитки (правый винт). зеркальная симметрия хорошо видна у бабочки; симметрия левого и правого проявляется здесь с почти строгостью.
также отметим зеркальную симметрию человеческого тела: правое и левое полушария головного мозга, правые и левые кисти рук, ступни ног и т.д. она же проявляется в гармонии человеческих движений, как в танцах, так и в технической работе, где проявляется закономерность.
принципы симметрии лежат в основе теории относительности, квантовой механики, твердого тела, атомной и ядерной , элементарных частиц. эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. речь при этом идет не только о законах, но и других, например, биологических. примером биологического закона сохранения может служить закон наследования. молекула днк, являющаяся носителем наследственной информации в живом организме, имеет структуру двойной правой спирали.
принцип «симметрии» широко используется в искусстве. бордюры, используемые в архитектурных и скульптурных произведениях, орнаменты, используемые в прикладном искусстве, - все это примеры использования симметрии.
на основании вышесказанного можно утверждать, симметрия в природе проявляется в самых различных объектах материального мира и отражает наиболее общие, наиболее его свойства. поэтому исследование симметрии разнообразных природных объектов и сопоставление результатов является удобным и надежным инструментом познания основных закономерностей существования материи. без принципа симметрии нельзя рассмотреть ни одной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями.
ответ: нет . Более того , невозможно получить произвольное натуральное число N.
Пошаговое объяснение:
Найдем среди чисел от 2 жо 1994 число содерщащее в делителях максимальную степень двойки.
Такое число единственно и равно : 2^10=1024
Предположим , что произвольная комбинация + ,- из слагаемых :
1/2 ;1/3 ; 1/4 1/994 равна натуральному числу N.
Тогда умножим обе части равенства на 2^10.
Во всех дробях вида : 2^10/k сократяться со знаменателем все степени числа 2, что содержит число k. (То есть знаменатели всех дробей станут нечетными) . Если число k отлично от 2^10 , то числители этих дробей будут четны , тк все эти числа содержат в себе меньше чем 2^10.
Но если число k=2^10=1024 , то это единственное число которое после сокращения имеет нечетный числитель равный 1. Другими словами это будет просто число 1 (2^10/2^10)=1.
Всего от 2 до 1994 : 1993 числа , одно из которых равно единице , а остальные имеют четные числители и нечетные знаменатели.
Если перенести единицу в правую часть равенства , то получим cправа:
2^10*N +-1 - абсолютно очевидно , что число справа является нечетным. (+- в зависимости от того какой знак стоит перед ним)
А слева у нас остается 1992 числа с четными числителями и нечетными знаменателями. Если привести каждую из данных дробей к общему нечетному знаменателю ( тк общий знаменатель нечетных чисел число нечетное) , то получим дробь с нечетным знаменателем и числителем состоящим сумм и разностей четных чисел. ( Cумма или разность в любых комбинациях произвольного числа четных чисел число четное)
Таким образом получаем :
A/B= 2^10 *N+-1=C
A-четное число
B-нечетное число
2^10*N +-1=C -нечетное число
Но тогда :
A=B*C -то есть мы получили, что произведение двух нечетных чисел равна четному числу. Мы пришли к противоречию.
Нельзя расставить знаки «+». «-» между дробями 1/2,1/3,1/4...1/1994 так , чтобы в результате получилось натуральное число. Cоответственно число 4 не является исключением из правил и его так же получить невозможно.
Поделитесь своими знаниями, ответьте на вопрос:
5736
8542
это же совсем просто